1. Choi M, Park YJ, Sharma BK, Bae SR, Kim SY, Ahn JH. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor. Sci Adv 2018;4:eaas8721.
2. Hwangbo S, Hu L, Hoang AT, Choi JY, Ahn JH. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat Nanotechnol 2022;17:500-6.
3. Kim DC, Yun H, Kim J, et al. Three-dimensional foldable quantum dot light-emitting diodes. Nat Electron 2021;4:671-80.
4. Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010;327:1603-7.
5. Kim DY, Kim MJ, Sung G, Sun JY. Stretchable and reflective displays: materials, technologies and strategies. Nano Converg 2019;6:21.
6. Oh S, Lee S, Byun SH, et al. 3D shape-morphing display enabled by electrothermally responsive, stiffness-tunable liquid metal platform with stretchable electroluminescent device. Adv Funct Mater 2023;33:2214766.
7. Kim J, Salvatore GA, Araki H, et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci Adv 2016;2:e1600418.
8. Shi X, Zuo Y, Zhai P, et al. Large-area display textiles integrated with functional systems. Nature 2021;591:240-5.
9. Hong JH, Shin JM, Kim GM, et al. 9.1-inch stretchable AMOLED display based on LTPS technology. J Soc Info Display 2017;25:194-9.
10. Kim S, Shin JM, Hong JH, et al. 82-5: Late-news paper: three dimensionally stretchable AMOLED display for freeform displays. Symp Dig Tech Pap 2019;50:1194-7.
11. Hong JH, Kim S, Lee J, Yoon J, Kim S, Kim Y. 74-1: Invited paper: highly stretchable and shrinkable AMOLED for free deformation. Symp Dig Tech Pap 2023;54:1041-4.
12. Koo JH, Kim DC, Shim HJ, Kim T, Kim D. Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv Funct Mater 2018;28:1801834.
13. Kim DC, Shim HJ, Lee W, Koo JH, Kim DH. Material-based approaches for the fabrication of stretchable electronics. Adv Mater 2020;32:e1902743.
14. Zhao Z, Liu K, Liu Y, Guo Y, Liu Y. Intrinsically flexible displays: key materials and devices. Natl Sci Rev 2022;9:nwac090.
15. Lee Y, Cho H, Yoon H, et al. Advancements in electronic materials and devices for stretchable displays. Adv Mater Technol 2023;8:2201067.
16. Kim DW, Kim SW, Lee G, et al. Fabrication of practical deformable displays: advances and challenges. Light Sci Appl 2023;12:61.
17. Zhou H, Kim KN, Sung MJ, Han SJ, Lee TW. Intrinsically stretchable low-dimensional conductors for wearable organic light-emitting diodes. Device 2023;1:100060.
18. Lee B, Cho H, Jeong S, et al. Stretchable hybrid electronics: combining rigid electronic devices with stretchable interconnects into high-performance on-skin electronics. J Inf Disp 2022;23:163-84.
19. Hanif A, Yoo D, Kim D, Mustafayev F, Hajiyev S, Kim DS. Recent progress in strain-engineered stretchable constructs. Int J Precis Eng Manuf Green Tech 2024;11:1403-33.
20. Trung TQ, Lee NE. Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv Mater 2017;29:1603167.
21. Yen YW, Kuo YL, Chen JY, Lee C, Lee CY. Investigation of thermal stability of Mo thin-films as the buffer layer and various Cu metallization as interconnection materials for thin film transistor-liquid crystal display applications. Thin Solid Films 2007;515:7209-16.
22. You B, Kim Y, Ju BK, Kim JW. Highly stretchable and waterproof electroluminescence device based on superstable stretchable transparent electrode. ACS Appl Mater Interfaces 2017;9:5486-94.
23. Zhao C, Zhou Y, Gu S, et al. Fully screen-printed, multicolor, and stretchable electroluminescent displays for epidermal electronics. ACS Appl Mater Interfaces 2020;12:47902-10.
24. Cai L, Zhang S, Zhang Y, et al. Direct printing for additive patterning of silver nanowires for stretchable sensor and display applications. Adv Mater Technol 2018;3:1700232.
25. Jeong W, Lee S, Choi H, et al. Washable, stretchable, and reusable core-shell metal nanowire network-based electronics on a breathable polymer nanomesh substrate. Mater Today 2022;61:30-9.
26. Lin Y, Li Q, Ding C, et al. High-resolution and large-size stretchable electrodes based on patterned silver nanowires composites. Nano Res 2022;15:4590-8.
27. Tran P, Tran NH, Lee JH. Highly stretchable electroluminescent device based on copper nanowires electrode. Sci Rep 2022;12:8967.
28. Lee W, Kim H, Kang I, et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Science 2022;378:637-41.
29. Li X, Lin Y, Cui L, et al. Stretchable and lithography-compatible interconnects enabled by self-assembled nanofilms with interlocking interfaces. ACS Appl Mater Interfaces 2023;15:56233-41.
30. Park J, Myung JS, Cho D, et al. Internally structured conductive composite for reliable stretchable electronics. Adv Elect Mater 2023;9:2201021.
31. Song S, Hong H, Kim KY, et al. Photothermal lithography for realizing a stretchable multilayer electronic circuit using a laser. ACS Nano 2023;17:21443-54.
32. Veerapandian S, Jang W, Seol JB, et al. Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines. Nat Mater 2021;20:533-40.
33. Wang T, Liu Q, Liu H, Xu B, Xu H. Printable and highly stretchable viscoelastic conductors with kinematically reconstructed conductive pathways. Adv Mater 2022;34:e2202418.
34. Kim MS, Kim S, Choi J, et al. Stretchable printed circuit board based on leak-free liquid metal interconnection and local strain control. ACS Appl Mater Interfaces 2022;14:1826-37.
35. Liu S, Shah DS, Kramer-Bottiglio R. Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat Mater 2021;20:851-8.
36. Lopes PA, Fernandes DF, Silva AF, et al. Bi-phasic Ag-in-Ga-embedded elastomer inks for digitally printed, ultra-stretchable, multi-layer electronics. ACS Appl Mater Interfaces 2021;13:14552-61.
37. Park C, Kim J, Lee H, et al. Biaxially stretchable active-matrix micro-LED display with liquid metal interconnects. Adv Mater Technol 2023;9:2301413.
38. Park CW, Moon YG, Seong H, et al. Photolithography-based patterning of liquid metal interconnects for monolithically integrated stretchable circuits. ACS Appl Mater Interfaces 2016;8:15459-65.
39. Kraft U, Molina-lopez F, Son D, Bao Z, Murmann B. Ink development and printing of conducting polymers for intrinsically stretchable interconnects and circuits. Adv Elect Mater 2020;6:1900681.
40. Wang Z, Liu X, Shen X, et al. An ultralight graphene honeycomb sandwich for stretchable light-emitting displays. Adv Funct Mater 2018;28:1707043.
41. Bang J, Ahn J, Zhang J, et al. Stretchable and directly patternable double-layer structure electrodes with complete coverage. ACS Nano 2022;16:12134-44.
42. Lee G, Kim H, Lee J, et al. Large-area photo-patterning of initially conductive EGaIn particle-assembled film for soft electronics. Mater Today 2023;67:84-94.
43. Shin H, Sharma BK, Lee SW, et al. Stretchable electroluminescent display enabled by graphene-based hybrid electrode. ACS Appl Mater Interfaces 2019;11:14222-8.
44. Zhou H, Han SJ, Harit AK, et al. Graphene-based intrinsically stretchable 2d-contact electrodes for highly efficient organic light-emitting diodes. Adv Mater 2022;34:e2203040.
45. Kim DW, Kwon J, Kim HS, Jeong U. Printed stretchable single-nanofiber interconnections for individually-addressable highly-integrated transparent stretchable field effect transistor array. Nano Lett 2021;21:5819-27.
46. Zhang C, Khan A, Cai J, et al. Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film. ACS Appl Mater Interfaces 2018;10:21009-17.
47. Wang Y, Zhu C, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 2017;3:e1602076.
48. Yao S, Zhu Y. Nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv Mater 2015;27:1480-511.
49. Vosgueritchian M, Lipomi DJ, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Mater 2012;22:421-8.
50. Kang S, Lee BY, Lee SH, Lee SD. High resolution micro-patterning of stretchable polymer electrodes through directed wetting localization. Sci Rep 2019;9:13066.
51. Gong X, Chu Z, Li G, et al. Efficient fabrication of carbon nanotube-based stretchable electrodes for flexible electronic devices. Macromol Rapid Commun 2023;44:e2200795.
52. Li X, Li M, Zong L, et al. Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible conductive devices. Adv Funct Mater 2018;28:1804197.
53. Zhu M, Ji S, Luo Y, et al. A mechanically interlocking strategy based on conductive microbridges for stretchable electronics. Adv Mater 2022;34:e2101339.
54. Kwon C, Seong D, Ha J, et al. Self-bondable and stretchable conductive composite fibers with spatially controlled percolated ag nanoparticle networks: novel integration strategy for wearable electronics. Adv Funct Mater 2020;30:2005447.
55. Lee Y, Kim BJ, Hu L, Hong J, Ahn JH. Morphable 3D structure for stretchable display. Mater Today 2022;53:51-7.
56. Kim N, Kim J, Seo J, Hong C, Lee J. Stretchable inorganic LED displays with double-layer modular design for high fill factor. ACS Appl Mater Interfaces 2022;14:4344-51.
57. Lee D, Kim SB, Kim T, et al. Stretchable OLEDs based on a hidden active area for high fill factor and resolution compensation. Nat Commun 2024;15:4349.
58. Myny K. The development of flexible integrated circuits based on thin-film transistors. Nat Electron 2018;1:30-9.
59. Wu F, Liu Y, Zhang J, Duan S, Ji D, Yang H. Recent advances in high-mobility and high-stretchability organic field-effect transistors: from materials, devices to applications. Small Methods 2021;5:e2100676.
60. Wang S, Xu J, Wang W, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018;555:83-8.
61. Liu J, Wang J, Zhang Z, et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat Commun 2020;11:3362.
62. Liu D, Mun J, Chen G, et al. A design strategy for intrinsically stretchable high-performance polymer semiconductors: incorporating conjugated rigid fused-rings with bulky side groups. J Am Chem Soc 2021;143:11679-89.
63. Matsuhisa N, Niu S, O’Neill SJK, et al. High-frequency and intrinsically stretchable polymer diodes. Nature 2021;600:246-52.
64. Mun J, Ochiai Y, Wang W, et al. A design strategy for high mobility stretchable polymer semiconductors. Nat Commun 2021;12:3572.
65. Ren H, Zhang J, Tong Y, et al. Selection of insulating elastomers for high-performance intrinsically stretchable transistors. ACS Appl Electron Mater 2021;3:1458-67.
66. Zheng Y, Yu Z, Zhang S, et al. A molecular design approach towards elastic and multifunctional polymer electronics. Nat Commun 2021;12:5701.
67. Liu D, Lei Y, Ji X, et al. Tuning the mechanical and electric properties of conjugated polymer semiconductors: side-chain design based on asymmetric benzodithiophene building blocks. Adv Funct Mater 2022;32:2203527.
68. Pei D, An C, Zhao B, et al. Polyurethane-based stretchable semiconductor nanofilms with high intrinsic recovery similar to conventional elastomers. ACS Appl Mater Interfaces 2022;14:33806-16.
69. Liu K, Wang C, Liu B, et al. Low-voltage intrinsically stretchable organic transistor amplifiers for ultrasensitive electrophysiological signal detection. Adv Mater 2023;35:e2207006.
70. Zheng Y, Michalek L, Liu Q, et al. Environmentally stable and stretchable polymer electronics enabled by surface-tethered nanostructured molecular-level protection. Nat Nanotechnol 2023;18:1175-84.
71. Kim JS, Jeong MW, Nam TU, et al. Intrinsically stretchable subthreshold organic transistors for highly sensitive low-power skin-like active-matrix temperature sensors. Adv Funct Mater 2024;34:2305252.
72. Park CW, Koo JB, Hwang C, Park H, Im SG, Lee S. Stretchable active matrix of oxide thin-film transistors with monolithic liquid metal interconnects. Appl Phys Express 2018;11:126501.
73. Kim JO, Hur JS, Kim D, et al. Network structure modification-enabled hybrid polymer dielectric film with zirconia for the stretchable transistor applications. Adv Funct Mater 2020;30:1906647.
74. Han K, Lee W, Kim Y, Kim J, Choi B, Park J. Mechanical durability of flexible/stretchable a-IGZO TFTs on PI island for wearable electronic application. ACS Appl Electron Mater 2021;3:5037-47.
75. Li E, Rao Z, Wang X, et al. Direct fabrication of stretchable electronics on a programmable stiffness substrate with 100% strain isolation. IEEE Electron Device Lett 2021;42:1484-7.
76. Kim Y, Kim J, Kim CY, et al. A modulus-engineered multi-layer polymer film with mechanical robustness for the application to highly deformable substrate platform in stretchable electronics. Chem Eng J 2022;431:134074.
77. Lee W, Park J. Fatigue effect of stretchable a-InGaZnO TFT on PI/PDMS substrate under repetitive Uni/biaxial elongation stress. ACS Appl Electron Mater 2022;4:6004-12.
78. Miyakawa M, Tsuji H, Nakata M. Highly stretchable island-structure metal oxide thin-film transistor arrays using acrylic adhesive for deformable display applications. J Soc Inf Disp 2022;30:699-705.
79. Oh H, Oh JY, Park CW, Pi JE, Yang JH, Hwang CS. High density integration of stretchable inorganic thin film transistors with excellent performance and reliability. Nat Commun 2022;13:4963.
80. Song X, Zhang T, Wu L, et al. Highly stretchable high-performance silicon nanowire field effect transistors integrated on elastomer substrates. Adv Sci 2022;9:e2105623.
81. Kang SH, Jo JW, Lee JM, et al. Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale. Nat Commun 2024;15:2814.
82. Huang W, Jiao H, Huang Q, Zhang J, Zhang M. Ultra-high drivability, high-mobility, low-voltage and high-integration intrinsically stretchable transistors. Nanoscale 2020;12:23546-55.
83. Fan L, Wang Q, Huang Q, et al. Stretchable carbon nanotube thin-film transistor arrays realized by a universal transferable-band-aid method. IEEE Trans Electron Devices 2021;68:5879-85.
84. Nishio Y, Hirotani J, Kishimoto S, Kataura H, Ohno Y. Low-voltage operable and strain-insensitive stretchable all-carbon nanotube integrated circuits with local strain suppression layer. Adv Elect Mater 2021;7:2000674.
85. Zhang W, Liu Y, Pei X, et al. Stretchable MoS2 artificial photoreceptors for E-Skin. Adv Funct Mater 2022;32:2107524.
86. Koo JH, Kang J, Lee S, et al. A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat Electron 2023;6:137-45.
87. Li Y, Li N, Liu W, et al. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat Commun 2023;14:4488.
88. Mai Y, Cotterell B. On the essential work of ductile fracture in polymers. Int J Fract 1986;32:105-25.
89. Xia Z, Hutchinson JW. Crack patterns in thin films. J Mech Phys Solids 2000;48:1107-31.
90. Alkhadra MA, Root SE, Hilby KM, Rodriquez D, Sugiyama F, Lipomi DJ. Quantifying the fracture behavior of brittle and ductile thin films of semiconducting polymers. Chem Mater 2017;29:10139-49.
91. Kim SW, Park S, Lee S, et al. Stretchable mesh-patterned organic semiconducting thin films on creased elastomeric substrates. Adv Funct Mater 2021;31:2010870.
92. Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater 2012;24:2945-86.
93. Park B, Nam S, Kang Y, et al. Cation doping strategy for improved carrier mobility and stability in metal-oxide Heterojunction thin-film transistors. Mater Today Electron 2024;8:100090.
94. Chae SH, Yu WJ, Bae JJ, et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat Mater 2013;12:403-9.
95. Cai L, Wang C. Carbon nanotube flexible and stretchable electronics. Nanoscale Res Lett 2015;10:1013.
96. Dai Y, Hu H, Wang M, Xu J, Wang S. Stretchable transistors and functional circuits for human-integrated electronics. Nat Electron 2021;4:17-29.
97. Jeong MW, Ma JH, Shin JS, et al. Intrinsically stretchable three primary light-emitting films enabled by elastomer blend for polymer light-emitting diodes. Sci Adv 2023;9:eadh1504.
98. Kim JH, Park JW. Intrinsically stretchable organic light-emitting diodes. Sci Adv 2021;7:eabd9715.
99. Jeon K, Park J. Light-emitting polymer blended with elastomers for stretchable polymer light-emitting diodes. Macromolecules 2022;55:8311-20.
100. Li XC, Yao L, Song W, et al. Intrinsically stretchable electroluminescent elastomers with self-confinement effect for highly efficient non-blended stretchable OLEDs. Angew Chem Int Ed Engl 2023;62:e202213749.
101. Liu W, Zhang C, Alessandri R, et al. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nat Mater 2023;22:737-45.
102. Oh JH, Park JW. Intrinsically stretchable phosphorescent light-emitting materials for stretchable displays. ACS Appl Mater Interfaces 2023;15:33784-96.
103. Xie P, Mao J, Luo Y. Highly bright and stable electroluminescent devices with extraordinary stretchability and ultraconformability. J Mater Chem C 2019;7:484-9.
104. Zhou Y, Zhao C, Wang J, et al. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Mater Lett 2019;1:511-8.
105. Tan YJ, Godaba H, Chen G, et al. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics. Nat Mater 2020;19:182-8.
106. Xuan HD, Timothy B, Park HY, et al. Super stretchable and durable electroluminescent devices based on double-network ionogels. Adv Mater 2021;33:e2008849.
107. Zhu H, Hu X, Liu B, Chen Z, Qu S. 3D printing of conductive hydrogel-elastomer hybrids for stretchable electronics. ACS Appl Mater Interfaces 2021;13:59243-51.
108. Zhao C, Yang B, Ali MU, et al. Bright stretchable white alternating-current electroluminescent devices enabled by photoluminescent phosphor. Adv Mater Technol 2022;7:2101440.
109. Zhu Y, Xia Y, Wu M, Guo W, Jia C, Wang X. Wearable, freezing-tolerant, and self-powered electroluminescence system for long-term cold-resistant displays. Nano Energy 2022;98:107309.
110. Go Y, Park H, Zhu Y, et al. Optically transparent and mechanically robust ionic hydrogel electrodes for bright electroluminescent devices achieving high stretchability over 1400%. Adv Funct Mater 2023;33:2215193.
111. von Szczepanski J, Wolf J, Hu W, et al. High-permittivity polysiloxanes for bright, stretchable electroluminescent devices. Adv Opt Mater 2024;12:2400132.
112. Bade SGR, Shan X, Hoang PT, et al. Stretchable light-emitting diodes with organometal-halide-perovskite-polymer composite emitters. Adv Mater 2017;29:1607053.
113. Lin CC, Jiang DH, Kuo CC, et al. Water-resistant efficient stretchable perovskite-embedded fiber membranes for light-emitting diodes. ACS Appl Mater Interfaces 2018;10:2210-5.
114. Ercan E, Tsai PC, Chen JY, et al. Stretchable and ambient stable perovskite/polymer luminous hybrid nanofibers of multicolor fiber mats and their white LED applications. ACS Appl Mater Interfaces 2019;11:23605-15.
115. Lee SY, Jeon S, Ahn J, et al. Highly stretchable white-light electroluminescent devices with gel-type silica-coated all-inorganic perovskite. Appl Surf Sci 2021;563:150229.
116. Jeong SM, Song S, Kim H, Baek S, Kwak JS. Stretchable, alternating-current-driven white electroluminescent device based on bilayer-structured quantum-dot-embedded polydimethylsiloxane elastomer. RSC Adv 2017;7:8816-22.
117. Le TH, Choi Y, Kim S, et al. Highly elastic and >200% reversibly stretchable down-conversion white light-emitting diodes based on quantum dot gel emitters. Adv Opt Mater 2020;8:1901972.
118. Lee Y, Kim DS, Jin SW, et al. Stretchable array of CdSe/ZnS quantum-dot light emitting diodes for visual display of bio-signals. Chem Eng J 2022;427:130858.
119. Kim DC, Seung H, Yoo J, et al. Intrinsically stretchable quantum dot light-emitting diodes. Nat Electron 2024;7:365-74.
120. Tien H, Huang Y, Chiu Y, Cheng Y, Chueh C, Lee W. Intrinsically stretchable polymer semiconductors: molecular design, processing and device applications. J Mater Chem C 2021;9:2660-84.
121. Ding Z, Liu D, Zhao K, Han Y. Optimizing morphology to trade off charge transport and mechanical properties of stretchable conjugated polymer films. Macromolecules 2021;54:3907-26.
122. Lucchetta DE, Di Donato A, Francescangeli O, Riminesi C, Singh G, Castagna R. Flexible, stretchable, tunable, and switchable DFB Laser. Photonics 2023;10:12.
123. Hao S, Yang C, Yang X, et al. Highly tough, stretchable, and recyclable ionogels with crosslink-enhanced emission characteristics for anti-counterfeiting and motion detection. ACS Appl Mater Interfaces 2023;15:16132-43.
124. Choi MK, Yang J, Hyeon T, Kim D. Flexible quantum dot light-emitting diodes for next-generation displays. npj Flex Electron 2018;2:23.
125. Kim TH, Lee CS, Kim S, et al. Fully stretchable optoelectronic sensors based on colloidal quantum dots for sensing photoplethysmographic signals. ACS Nano 2017;11:5992-6003.
126. Li YF, Chou SY, Huang P, et al. Stretchable organometal-halide-perovskite quantum-dot light-emitting diodes. Adv Mater 2019;31:e1807516.
127. Kim T, Lee H, Jo W, Kim T, Yoo S. Realizing stretchable OLEDs: a hybrid platform based on rigid island arrays on a stress-relieving bilayer structure. Adv Mater Technol 2020;5:2000494.
128. Lim MS, Nam M, Choi S, et al. Two-dimensionally stretchable organic light-emitting diode with elastic pillar arrays for stress relief. Nano Lett 2020;20:1526-35.
129. Hsiang E, Yang Z, Yang Q, Lan Y, Wu S. Prospects and challenges of mini-LED, OLED, and micro-LED displays. J Soc Inf Disp 2021;29:446-65.
130. Meng W, Xu F, Yu Z, et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat Nanotechnol 2021;16:1231-6.
131. Ma F, Lin Y, Yuan W, et al. Fully printed, large-size alternating current electroluminescent device on fabric for wearable textile display. ACS Appl Electron Mater 2021;3:1747-57.
132. Mi H, Zhong L, Tang X, et al. Electroluminescent fabric woven by ultrastretchable fibers for arbitrarily controllable pattern display. ACS Appl Mater Interfaces 2021;13:11260-7.
133. Lee H, Chun YT. Fibertronic quantum-dot light-emitting diode for e-textile. ACS Appl Nano Mater 2020;3:11060-9.
134. Song YJ, Kim JW, Cho HE, et al. Fibertronic organic light-emitting diodes toward fully addressable, environmentally robust, wearable displays. ACS Nano 2020;14:1133-40.
135. Choi S, Jo W, Jeon Y, et al. Multi-directionally wrinkle-able textile OLEDs for clothing-type displays. npj Flex Electron 2020;4:96.
136. Song H, Song YJ, Hong J, et al. Water stable and matrix addressable OLED fiber textiles for wearable displays with large emission area. npj Flex Electron 2022;6:199.
137. Jang B, Won S, Kim J, et al. Auxetic meta-display: stretchable display without image distortion. Adv Funct Mater 2022;32:2113299.
138. Jiang S, Liu J, Xiong W, et al. A snakeskin-inspired, soft-hinge kirigami metamaterial for self-adaptive conformal electronic armor. Adv Mater 2022;34:e2204091.
139. Hwang W, Kim J, Park S, et al. A breathable and stretchable metastructure for a versatile hybrid electronic skin patch with long-term skin comfort. Adv Mater Technol 2023;8:2200477.
140. Deng Y, Xu K, Jiao R, et al. Rotating square tessellations enabled stretchable and adaptive curved display. npj Flex Electron 2024;8:291.
141. Heo JS, Eom J, Kim YH, Park SK. Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications. Small 2018;14:1703034.
142. Yun MJ, Sim YH, Lee DY, Cha SI. Highly stretchable large area woven, knitted and robust braided textile based interconnection for stretchable electronics. Sci Rep 2021;11:4038.
143. Choi JC, Jeong HY, Sun JH, et al. Bidirectional zero poisson’s ratio elastomers with self-deformable soft mechanical metamaterials for stretchable displays. Adv Funct Mater 2024:2406725.
144. Yoo J, Ha S, Lee GH, Kim Y, Choi MK. Stretchable high-resolution user-interactive synesthesia displays for visual-acoustic encryption. Adv Funct Mater 2023;33:2302473.
145. Yang B, Zhao Y, Ali MU, et al. Asymmetrically enhanced coplanar-electrode electroluminescence for information encryption and ultrahighly stretchable displays. Adv Mater 2022;34:e2201342.
146. Kwon JH, Kim YM, Moon HC. Porous ion gel: a versatile ionotronic sensory platform for high-performance, wearable ionoskins with electrical and optical dual output. ACS Nano 2021;15:15132-41.
147. Nobeshima T, Nakakomi M, Nakamura K, Kobayashi N. Alternating-current-driven, color-tunable electrochemiluminescent cells. Adv Opt Mater 2013;1:144-9.
148. Shin S, Park YS, Cho S, et al. Effect of ion migration in electro-generated chemiluminescence depending on the luminophore types and operating conditions. Chem Sci 2018;9:2480-8.
149. Moon HC, Lodge TP, Frisbie CD. Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic. J Am Chem Soc 2014;136:3705-12.
150. Kim SH, Baek GW, Yoon J, et al. A bioinspired stretchable sensory-neuromorphic system. Adv Mater 2021;33:e2104690.
151. Zhang P, Lei IM, Chen G, et al. Integrated 3D printing of flexible electroluminescent devices and soft robots. Nat Commun 2022;13:4775.
152. Zhao J, Lo LW, Wan H, Mao P, Yu Z, Wang C. High-speed fabrication of all-inkjet-printed organometallic halide perovskite light-emitting diodes on elastic substrates. Adv Mater 2021;33:e2102095.
153. Wang D, Hauptmann J, May C, Hofstetter YJ, Vaynzof Y, Müller T. Roll-to-roll fabrication of highly transparent Ca:Ag top-electrode towards flexible large-area OLED lighting application. Flex Print Electron 2021;6:035001.
154. Wang C, Linghu C, Nie S, et al. Programmable and scalable transfer printing with high reliability and efficiency for flexible inorganic electronics. Sci Adv 2020;6:eabb2393.
155. Luo H, Wang C, Linghu C, Yu K, Wang C, Song J. Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric microstructured stamp. Natl Sci Rev 2020;7:296-304.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.