REFERENCES
1. Pikul JH, Li S, Bai H, Hanlon RT, Cohen I, Shepherd RF. Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science 2017;358:210-4.
2. de Espinosa LM, Meesorn W, Moatsou D, Weder C. Bioinspired polymer systems with stimuli-responsive mechanical properties. Chem Rev 2017;117:12851-92.
3. Apsite I, Salehi S, Ionov L. Materials for smart soft actuator systems. Chem Rev 2022;122:1349-415.
4. Kim H, Ahn S, Mackie DM, et al. Shape morphing smart 3D actuator materials for micro soft robot. Mater Today 2020;41:243-69.
5. Erol O, Pantula A, Liu W, Gracias DH. Transformer hydrogels: a review. Adv Mater Technol 2019;4:1900043.
6. Jiao D, Zhu QL, Li CY, Zheng Q, Wu ZL. Programmable morphing hydrogels for soft actuators and robots: from structure designs to active functions. Acc Chem Res 2022;55:1533-45.
7. Li S, Wang KW. Plant-inspired adaptive structures and materials for morphing and actuation: a review. Bioinspir Biomim 2016;12:011001.
9. Keneth ES, Kamyshny A, Totaro M, Beccai L, Magdassi S. 3D printing materials for soft robotics. Adv Mater 2021;33:2003387.
11. Manna RK, Shklyaev OE, Stone HA, Balazs AC. Chemically controlled shape-morphing of elastic sheets. Mater Horiz 2020;7:2314-27.
12. Zhu Z, Ng DWH, Park HS, McAlpine MC. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat Rev Mater 2021;6:27-47.
13. Xu S, Yan Z, Jang KI, et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 2015;347:154-9.
14. Zhang Y, Ding J, Qi B, et al. Multifunctional fibers to shape future biomedical devices. Adv Funct Mater 2019;29:1902834.
15. Ze Q, Kuang X, Wu S, et al. Shape memory polymers: magnetic shape memory polymers with integrated multifunctional shape manipulation (Adv. Mater. 4/2020). Adv Mater 2020;32:2070025.
16. Kirillova A, Ionov L. Shape-changing polymers for biomedical applications. J Mater Chem B 2019;7:1597-624.
17. Callens SJP, Zadpoor AA. From flat sheets to curved geometries: origami and kirigami approaches. Mater Today 2018;21:241-64.
18. Shah D, Yang B, Kriegman S, Levin M, Bongard J, Kramer-Bottiglio R. Shape changing robots: bioinspiration, simulation, and physical realization. Adv Mater 2021;33:2002882.
19. Hannard F, Mirkhalaf M, Ameri A, Barthelat F. Segmentations in fins enable large morphing amplitudes combined with high flexural stiffness for fish-inspired robotic materials. Sci Robot 2021;6:eabf9710.
20. Yokota K, Barthelat F. Stiff bioinspired architectured beams bend Saint-Venant’s principle and generate large shape morphing. Int J Solids Struct 2023;274:112270.
21. Holmes DP. Elasticity and stability of shape-shifting structures. Curr Opin Colloid Inter Sci 2019;40:118-37.
22. Zhao Q, Zou W, Luo Y, Xie T. Shape memory polymer network with thermally distinct elasticity and plasticity. Sci Adv 2016;2:e1501297.
23. Saleem M, Morlot S, Hohendahl A, Manzi J, Lenz M, Roux A. A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats. Nat Commun 2015;6:6249.
25. Nagarkar A, Lee WK, Preston DJ, et al. Elastic-instability-enabled locomotion. Proc Natl Acad Sci U S A 2021;118:e2013801118.
26. Van Meerbeek IM, Mac Murray BC, Kim JW, et al. Foams: morphing metal and elastomer bicontinuous foams for reversible stiffness, shape memory, and self-healing soft machines (Adv. Mater. 14/2016). Adv Mater 2016;28:2653.
27. Grönquist P, Wood D, Hassani MM, Wittel FK, Menges A, Rüggeberg M. Analysis of hygroscopic self-shaping wood at large scale for curved mass timber structures. Sci Adv 2019;5:eaax1311.
28. Rus D, Tolley MT. Design, fabrication and control of origami robots. Nat Rev Mater 2018;3:101-12.
29. Ning X, Wang X, Zhang Y, et al. Assembly of advanced materials into 3D functional structures by methods inspired by origami and kirigami: a review. Adv Mater Interfaces 2018;5:1800284.
30. Oliver K, Seddon A, Trask RS. Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms. J Mater Sci 2016;51:10663-89.
31. Guseinov R, Miguel E, Bickel B. CurveUps: shaping objects from flat plates with tension-actuated curvature. ACM Trans Graph 2017;36:1-12.
32. Mirabet V, Das P, Boudaoud A, Hamant O. The role of mechanical forces in plant morphogenesis. Annu Rev Plant Biol 2011;62:365-85.
34. Berleth T, Sachs T. Plant morphogenesis: long-distance coordination and local patterning. Curr Opin Plant Biol 2001;4:57-62.
35. Lee H, Kim H, Ha I, et al. Directional shape morphing transparent walking soft robot. Soft Robot 2019;6:760-7.
36. Wu S, Hong Y, Zhao Y, Yin J, Zhu Y. Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. Sci Adv 2023;9:eadf8014.
37. Han B, Ma ZC, Zhang YL, et al. Reprogrammable soft robot actuation by synergistic magnetic and light fields. Adv Funct Mater 2022;32:2110997.
38. Wang XQ, Chan KH, Cheng Y, et al. Somatosensory, light-driven, thin-film robots capable of integrated perception and motility. Adv Mater 2020;32:2000351.
39. Jing L, Li K, Yang H, Chen PY. Recent advances in integration of 2D materials with soft matter for multifunctional robotic materials. Mater Horiz 2020;7:54-70.
40. Efrati E, Sharon E, Kupferman R. Elastic theory of unconstrained non-Euclidean plates. J Mech Phys Solids 2009;57:762-75.
42. Chun IS, Challa A, Derickson B, Hsia KJ, Li X. Geometry effect on the strain-induced self-rolling of semiconductor membranes. Nano Lett 2010;10:3927-32.
43. Huang W, Koric S, Yu X, Hsia KJ, Li X. Precision structural engineering of self-rolled-up 3D nanomembranes guided by transient quasi-static FEM modeling. Nano Lett 2014;14:6293-7.
45. Liu Y, Genzer J, Dickey MD. “2D or not 2D”: shape-programming polymer sheets. Prog Polym Sci 2016;52:79-106.
46. Bauhofer AA, Krödel S, Rys J, Bilal OR, Constantinescu A, Daraio C. Harnessing photochemical shrinkage in direct laser writing for shape morphing of polymer sheets. Adv Mater 2017;29:1703024.
47. Liu K, Hacker F, Daraio C. Robotic surfaces with reversible, spatiotemporal control for shape morphing and object manipulation. Sci Robot 2021;6:eabf5116.
48. Arslan H, Nojoomi A, Jeon J, Yum K. 3D printing of anisotropic hydrogels with bioinspired motion. Adv Sci 2019;6:1800703.
49. Egunov AI, Korvink JG, Luchnikov VA. Polydimethylsiloxane bilayer films with an embedded spontaneous curvature. Soft Matter 2016;12:45-52.
50. Tang J, Chen Z, Cai Y, He J, Luo Y. Stretch-activated reprogrammable shape-morphing composite elastomers. Adv Funct Mater 2022;32:2203308.
51. Zhao T, Zhang Y, Fan Y, Wang J, Jiang H, Lv J. Light-modulated liquid crystal elastomer actuator with multimodal shape morphing and multifunction. J Mater Chem C 2022;10:3796-803.
52. Guo J, Xiang C, Rossiter J. A soft and shape-adaptive electroadhesive composite gripper with proprioceptive and exteroceptive capabilities. Mater Design 2018;156:586-7.
53. Deng H, Xu X, Zhang C, Su JW, Huang G, Lin J. Deterministic self-morphing of soft-stiff hybridized polymeric films for acoustic metamaterials. ACS Appl Mater Interfaces 2020;12:13378-85.
54. Li Q, Le Duigou A, Guo J, et al. Biobased and programmable electroadhesive metasurfaces. ACS Appl Mater Interfaces 2022;14:47198-208.
55. Tan P, Wang H, Xiao F, et al. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat Commun 2022;13:358.
56. Yang SY, Carlson A, Cheng H, et al. Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications. Adv Mater 2012;24:2117-22.
57. Hwang Y, Yoo S, Lim N, et al. Enhancement of interfacial adhesion using micro/nanoscale hierarchical cilia for randomly accessible membrane-type electronic devices. ACS Nano 2020;14:118-28.
58. van Manen T, Janbaz S, Zadpoor AA. Programming the shape-shifting of flat soft matter. Mater Today 2018;21:144-63.
60. Jamal M, Zarafshar AM, Gracias DH. Differentially photo-crosslinked polymers enable self-assembling microfluidics. Nat Commun 2011;2:527.
61. Zhao Q, Dunlop JW, Qiu X, et al. An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nat Commun 2014;5:4293.
62. Alben S, Balakrisnan B, Smela E. Edge effects determine the direction of bilayer bending. Nano Lett 2011;11:2280-5.
63. Holmes DP, Roché M, Sinha T, Stone HA. Bending and twisting of soft materials by non-homogenous swelling. Soft Matter 2011;7:5188-93.
64. Abdullah AM, Li X, Braun PV, Rogers JA, Hsia KJ. Self-folded gripper-like architectures from stimuli-responsive bilayers. Adv Mater 2018;30:e1801669.
65. Liu Y, Cao Y, Feng XQ, Cao C. Phase transition and optimal actuation of active bilayer structures. Extreme Mech Lett 2019;29:100467.
66. Boley JW, van Rees WM, Lissandrello C, et al. Shape-shifting structured lattices via multimaterial 4D printing. Proc Natl Acad Sci U S A 2019;116:20856-62.
67. Armon S, Efrati E, Kupferman R, Sharon E. Geometry and mechanics in the opening of chiral seed pods. Science 2011;333:1726-30.
68. Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat Mater 2016;15:413-8.
69. Jang HS, Yoo S, Kang SH, Park J, Kim GG, Ko HC. Extrusion shear printing: automatic transformation of membrane-type electronic devices into complex 3D structures via extrusion shear printing and thermal relaxation of acrylonitrile-butadiene-styrene frameworks (Adv. Funct. Mater. 5/2020). Adv Funct Mater 2020;30:1907384.
71. Yoo JI, Park D, Kim SH, et al. Thermal shape morphing of membrane-type electronics based on plastic-elastomer frameworks for 3D electronics with various Gaussian curvatures. Mater Design 2023;227:111811.
72. Jourdan D, Skouras M, Vouga E, Bousseau A. Computational design of self-actuated surfaces by printing plastic ribbons on stretched fabric. Comput Graph Forum 2022;41:493-506.
73. Hu N, Burgueño R. Buckling-induced smart applications: recent advances and trends. Smart Mater Struct 2015;24:063001.
74. Reis PM. A Perspective on the revival of structural (in)stability with novel opportunities for function: from buckliphobia to buckliphilia. J Appl Mech 2015;82:111001.
75. Kochmann DM, Bertoldi K. Exploiting microstructural instabilities in solids and structures: from metamaterials to structural transitions. Appl Mech Rev 2017;69:050801.
76. Liu Y, Pan F, Ding B, Zhu Y, Yang K, Chen Y. Multistable shape-reconfigurable metawire in 3D space. Extreme Mech Lett 2022;50:101535.
77. Nadkarni N, Arrieta AF, Chong C, Kochmann DM, Daraio C. Unidirectional transition waves in bistable lattices. Phys Rev Lett 2016;116:244501.
78. Jin L, Khajehtourian R, Mueller J, et al. Guided transition waves in multistable mechanical metamaterials. Proc Natl Acad Sci U S A 2020;117:2319-25.
79. Zareei A, Deng B, Bertoldi K. Harnessing transition waves to realize deployable structures. Proc Natl Acad Sci U S A 2020;117:4015-20.
80. Haghpanah B, Salari-Sharif L, Pourrajab P, Hopkins J, Valdevit L. Multistable shape-reconfigurable architected materials. Adv Mater 2016;28:7915-20.
81. Meng Z, Liu M, Yan H, Genin GM, Chen CQ. Deployable mechanical metamaterials with multistep programmable transformation. Sci Adv 2022;8:eabn5460.
82. Meng Z, Chen W, Mei T, Lai Y, Li Y, Chen CQ. Bistability-based foldable origami mechanical logic gates. Extreme Mech Lett 2021;43:101180.
83. Zhang Y, Tichem M, van Keulen F. Concept and design of a metastructure-based multi-stable surface. Extreme Mech Lett 2022;51:101553.
84. Risso G, Sakovsky M, Ermanni P. A highly multi-stable meta-structure via anisotropy for large and reversible shape transformation. Adv Sci 2022;9:e2202740.
85. Liu M, Domino L, Dupont de Dinechin I, Taffetani M, Vella D. Snap-induced morphing: from a single bistable shell to the origin of shape bifurcation in interacting shells. J Mech Phys Solids 2023;170:105116.
86. Chen T, Shea K. Computational design of multi-stable, reconfigurable surfaces. Mater Design 2021;205:109688.
87. Meng Z, Yan H, Liu M, Qin W, Genin GM, Chen CQ. Encoding and storage of information in mechanical metamaterials. Adv Sci 2023;10:e2301581.
88. Pan F, Li Y, Li Z, Yang J, Liu B, Chen Y. 3D pixel mechanical metamaterials. Adv Mater 2019;31:e1900548.
89. Yan Z, Zhang F, Liu F, et al. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Sci Adv 2016;2:e1601014.
90. Demaine ED, Demaine ML. Recent results in computational origami. In: Hull T, editor. Origami3. 2002. Available from: https://www.semanticscholar.org/paper/Recent-Results-in-Computational-Origami-Demaine-Demaine/8c67754ac41e1eaea7d68f6dd49945bd881067e9. [Last accessed on 17 Oct 2023].
91. Yu Y, Chen Y, Paulino G. Programming curvatures by unfolding of the triangular Resch pattern. Int J Mech Sci 2023;238:107861.
92. Dudte LH, Vouga E, Tachi T, Mahadevan L. Programming curvature using origami tessellations. Nat Mater 2016;15:583-8.
94. Tachi T. Designing freeform origami tessellations by generalizing resch’s patterns. J Mech Des 2013;135:111006.
95. Xiao K, Liang Z, Zou B, Zhou X, Ju J. Inverse design of 3D reconfigurable curvilinear modular origami structures using geometric and topological reconstructions. Nat Commun 2022;13:7474.
96. Filipov ET, Tachi T, Paulino GH. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc Natl Acad Sci U S A 2015;112:12321-6.
97. Hanna BH, Lund JM, Lang RJ, Magleby SP, Howell LL. Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Mater Struct 2014;23:094009.
98. Yasuda H, Tachi T, Lee M, Yang J. Origami-based tunable truss structures for non-volatile mechanical memory operation. Nat Commun 2017;8:962.
99. Zhai Z, Wang Y, Jiang H. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness. Proc Natl Acad Sci U S A 2018;115:2032-7.
100. Wu S, Ze Q, Dai J, Udipi N, Paulino GH, Zhao R. Stretchable origami robotic arm with omnidirectional bending and twisting. Proc Natl Acad Sci U S A 2021;118:e2110023118.
101. Xia ZM, Wang CG, Tan HF. Quasi-static unfolding mechanics of a creased membrane based on a finite deformation crease-beam model. Int J Solids Struct 2020;207:104-12.
102. Xue Z, Song H, Rogers JA, Zhang Y, Huang Y. Mechanically-guided structural designs in stretchable inorganic electronics. Adv Mater 2020;32:e1902254.
103. Jang HS, Kim GG, Kang SH, et al. 3D image sensors: a bezel-less tetrahedral image sensor formed by solvent-assisted plasticization and transformation of an acrylonitrile butadiene styrene framework (Adv. Mater. 30/2018). Adv Mater 2018;30:1870224.
104. Kim GG, Kim Y, Yoo S, Jang HS, Ko HC. Hexahedral LED arrays with row and column control lines formed by selective liquid-phase plasticization and nondisruptive tucking-based origami. Adv Mater Technol 2020;5:2000010.
106. Lee YK, Xi Z, Lee YJ, et al. Computational wrapping: a universal method to wrap 3D-curved surfaces with nonstretchable materials for conformal devices. Sci Adv 2020;6:eaax6212.
107. Choi GPT, Dudte LH, Mahadevan L. Programming shape using kirigami tessellations. Nat Mater 2019;18:999-1004.
108. Konaković M, Crane K, Deng B, Bouaziz S, Piker D, Pauly M. Beyond developable: computational design and fabrication with auxetic materials. ACM Trans Graph 2016;35:1-11.
109. Konaković-luković M, Panetta J, Crane K, Pauly M. Rapid deployment of curved surfaces via programmable auxetics. ACM Trans Graph 2018;37:1-13.
110. Rafsanjani A, Pasini D. Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. Extreme Mech Lett 2016;9:291-6.
111. Chen T, Panetta J, Schnaubelt M, Pauly M. Bistable auxetic surface structures. ACM Trans Graph 2021;40:1-9.
112. Liu M, Domino L, Vella D. Tapered elasticæ as a route for axisymmetric morphing structures. Soft Matter 2020;16:7739-50.
113. Fan Z, Yang Y, Zhang F, et al. Inverse design strategies for 3D surfaces formed by mechanically guided assembly. Adv Mater 2020;32:e1908424.
114. Zhang Y, Yang J, Liu M, Vella D. Shape-morphing structures based on perforated kirigami. Extreme Mech Lett 2022;56:101857.
115. Cheng X, Fan Z, Yao S, et al. Programming 3D curved mesosurfaces using microlattice designs. Science 2023;379:1225-32.
116. Kansara H, Liu M, He Y, Tan W. Inverse design and additive manufacturing of shape-morphing structures based on functionally graded composites. J Mech Phys Solids 2023;180:105382.
117. Wang Z, Song P, Isvoranu F, Pauly M. Design and structural optimization of topological interlocking assemblies. ACM Trans Graph 2019;38:1-13.
118. Yang X, Wang Z, Zhang B, et al. Self-sensing robotic structures from architectured particle assemblies. Adv Intell Syst 2023;5:2200250.
120. Yang X, Liu M, Zhang B, et al. Hierarchical tessellation enables programmable morphing matter. 2023; In press.
122. Wang Y, Li L, Hofmann D, Andrade JE, Daraio C. Structured fabrics with tunable mechanical properties. Nature 2021;596:238-43.
123. Jeon SJ, Hauser AW, Hayward RC. Shape-morphing materials from stimuli-responsive hydrogel hybrids. Acc Chem Res 2017;50:161-9.
124. Tanjeem N, Minnis MB, Hayward RC, Shields CW 4th. Shape-changing particles: from materials design and mechanisms to implementation. Adv Mater 2022;34:e2105758.
125. Ren Y, Kusupati U, Panetta J, et al. Umbrella meshes: elastic mechanisms for freeform shape deployment. ACM Trans Graph 2022;41:1-15.
126. Panetta J, Konaković-luković M, Isvoranu F, Bouleau E, Pauly M. X-shells: a new class of deployable beam structures. ACM Trans Graph 2019;38:1-15.
130. Efroni I, Eshed Y, Lifschitz E. Morphogenesis of simple and compound leaves: a critical review. Plant Cell 2010;22:1019-32.
131. Guo K, Huang C, Miao Y, Cosgrove DJ, Hsia KJ. Leaf morphogenesis: the multifaceted roles of mechanics. Mol Plant 2022;15:1098-119.
132. Tsukaya H. Organ shape and size: a lesson from studies of leaf morphogenesis. Curr Opin Plant Biol 2003;6:57-62.
133. Huang C, Wang Z, Quinn D, Suresh S, Hsia KJ. Differential growth and shape formation in plant organs. Proc Natl Acad Sci U S A 2018;115:12359-64.
134. Zhao T, Fan Y, Lv J. Photomorphogenesis of diverse autonomous traveling waves in a monolithic soft artificial muscle. ACS Appl Mater Interfaces 2022;14:23839-49.
135. Siéfert E, Reyssat E, Bico J, Roman B. Bio-inspired pneumatic shape-morphing elastomers. Nat Mater 2019;18:24-8.
136. Siéfert E, Reyssat E, Bico J, Roman B. Programming curvilinear paths of flat inflatables. Proc Natl Acad Sci U S A 2019;116:16692-6.
137. Baines R, Patiballa SK, Gorissen B, Bertoldi K, Kramer-Bottiglio R. Programming 3D curves with discretely constrained cylindrical inflatables. Adv Mater 2023;35:e2300535.
138. Kim J, Hanna JA, Byun M, Santangelo CD, Hayward RC. Designing responsive buckled surfaces by halftone gel lithography. Science 2012;335:1201-5.
139. Laschi C, Mazzolai B, Cianchetti M. Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci Robot 2016;1:eaah3690.
140. Huang W, Liu M, Hsia KJ. Modeling of magnetic cilia carpet robots using discrete differential geometry formulation. Extreme Mech Lett 2023;59:101967.
141. Qin L, Peng H, Huang X, Liu M, Huang W. Modeling and simulation of dynamics in soft robotics: a review of numerical approaches. Curr Robot Rep 2023.
142. Shah DS, Powers JP, Tilton LG, Kriegman S, Bongard J, Kramer-bottiglio R. A soft robot that adapts to environments through shape change. Nat Mach Intell 2021;3:51-9.
143. Wang Y, Wang Q, Liu M, et al. Insect-scale jumping robots enabled by a dynamic buckling cascade. Proc Natl Acad Sci U S A 2023;120:e2210651120.
144. Rajappan A, Jumet B, Preston DJ. Pneumatic soft robots take a step toward autonomy. Sci Robot 2021;6:eabg6994.
145. Tawk C, Alici G. A review of 3D-printable soft pneumatic actuators and sensors: research challenges and opportunities. Adv Intell Syst 2021;3:2000223.
146. Jones TJ, Jambon-Puillet E, Marthelot J, Brun PT. Bubble casting soft robotics. Nature 2021;599:229-33.
147. Becker K, Teeple C, Charles N, et al. Active entanglement enables stochastic, topological grasping. Proc Natl Acad Sci U S A 2022;119:e2209819119.
148. Li M, Pal A, Aghakhani A, Pena-Francesch A, Sitti M. Soft actuators for real-world applications. Nat Rev Mater 2022;7:235-49.
149. Hines L, Petersen K, Lum GZ, Sitti M. Soft actuators for small-scale robotics. Adv Mater 2017;29:1603483.
150. Chen Y, Yang J, Zhang X, et al. Light-driven bimorph soft actuators: design, fabrication, and properties. Mater Horiz 2021;8:728-57.
151. Zeng H, Wasylczyk P, Wiersma DS, Priimagi A. Light robots: bridging the gap between microrobotics and photomechanics in soft materials. Adv Mater 2018;30:e1703554.
152. Yang Y, Terentjev EM, Zhang Y, et al. Reprocessable thermoset soft actuators. Angew Chem Int Ed Engl 2019;58:17474-9.
153. Won P, Kim KK, Kim H, et al. Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv Mater 2021;33:e2002397.
155. Hong Y, Chi Y, Wu S, Li Y, Zhu Y, Yin J. Boundary curvature guided programmable shape-morphing kirigami sheets. Nat Commun 2022;13:530.
156. Kim Y, Yuk H, Zhao R, Chester SA, Zhao X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 2018;558:274-9.
157. Zhai F, Feng Y, Li Z, et al. 4D-printed untethered self-propelling soft robot with tactile perception: rolling, racing, and exploring. Matter 2021;4:3313-26.
158. Hajiesmaili E, Clarke DR. Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nat Commun 2019;10:183.
159. Tang C, Du B, Jiang S, et al. A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale. Sci Robot 2022;7:eabm8597.
161. Chen Z, Guo Q, Majidi C, Chen W, Srolovitz DJ, Haataja MP. Nonlinear geometric effects in mechanical bistable morphing structures. Phys Rev Lett 2012;109:114302.
162. Sofla AYN, Meguid SA, Tan KT, Yeo WK. Shape morphing of aircraft wing: status and challenges. Mater Design 2010;31:1284-92.
163. Shi J, Mofatteh H, Mirabolghasemi A, Desharnais G, Akbarzadeh A. Programmable multistable perforated shellular. Adv Mater 2021;33:e2102423.
164. Aksoy B, Shea H. Multistable shape programming of variable-stiffness electromagnetic devices. Sci Adv 2022;8:eabk0543.
165. Forte AE, Hanakata PZ, Jin L, et al. Inverse design of inflatable soft membranes through machine learning. Adv Funct Mater 2022;32:2111610.
166. Wang C, Zhao Z, Zhang XS. Inverse design of magneto-active metasurfaces and robots: theory, computation, and experimental validation. Comput Method Appl Mech Eng 2023;413:116065.
167. Bai Y, Wang H, Xue Y, et al. A dynamically reprogrammable surface with self-evolving shape morphing. Nature 2022;609:701-8.
168. Zheng X, Zhang X, Chen TT, Watanabe I. Deep learning in mechanical metamaterials: from prediction and generation to inverse design. Adv Mater 2023;35:2302530.
169. Jiang C, Wang D, Zhao B, Liao Z, Gu G. Modeling and inverse design of bio-inspired multi-segment pneu-net soft manipulators for 3D trajectory motion. Appl Phys Rev 2021;8:041416.
170. Peng J, Schwalbe-koda D, Akkiraju K, et al. Human- and machine-centred designs of molecules and materials for sustainability and decarbonization. Nat Rev Mater 2022;7:991-1009.
171. Chen Y, Zhao H, Mao J, et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature 2019;575:324-9.
172. Duduta M, Hajiesmaili E, Zhao H, Wood RJ, Clarke DR. Realizing the potential of dielectric elastomer artificial muscles. Proc Natl Acad Sci U S A 2019;116:2476-81.
173. Zhao H, Hussain AM, Duduta M, Vogt DM, Wood RJ, Clarke DR. Compact dielectric elastomer linear actuators. Adv Funct Mater 2018;28:1804328.
174. Alapan Y, Karacakol AC, Guzelhan SN, Isik I, Sitti M. Reprogrammable shape morphing of magnetic soft machines. Sci Adv 2020;6:eabc6414.
175. Cui J, Huang TY, Luo Z, et al. Nanomagnetic encoding of shape-morphing micromachines. Nature 2019;575:164-8.
176. Ford MJ, Ambulo CP, Kent TA, et al. A multifunctional shape-morphing elastomer with liquid metal inclusions. Proc Natl Acad Sci U S A 2019;116:21438-44.
177. Zhao Z, Kumar J, Hwang Y, et al. Digital printing of shape-morphing natural materials. Proc Natl Acad Sci U S A 2021;118:e2113715118.
178. Dudek KK, Martínez JAI, Ulliac G, Kadic M. Micro-scale auxetic hierarchical mechanical metamaterials for shape morphing. Adv Mater 2022;34:e2110115.
179. Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L. Physics-informed machine learning. Nat Rev Phys 2021;3:422-40.
180. Wood RJ, Steltz E, Fearing RS. Optimal energy density piezoelectric bending actuators. Sensor Actuat A Phys 2005;119:476-88.
181. Lin Z, Shao Q, Liu X, Zhao H. An anthropomorphic musculoskeletal system with soft joint and multifilament pneumatic artificial muscles. Adv Intell Syst 2022;4:2200126.
182. Li J, Ma W, Song L, et al. Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett 2011;11:4636-41.
183. Zhao H, Li Y, Elsamadisi A, Shepherd R. Scalable manufacturing of high force wearable soft actuators. Extreme Mech Lett 2015;3:89-104.