1. Mchugh, P. J.; Stergiou, A. D.; Symes, M. D. Decoupled electrochemical water splitting: from fundamentals to applications. Adv. Energy. Mater. 2020, 10, 2002453.
2. He, X.; Han, X.; Zhou, X.; et al. Electronic modulation with Pt-incorporated NiFe layered double hydroxide for ultrastable overall water splitting at 1000 mA·cm−2. Appl. Catal. B:. Environ. 2023, 331, 122683.
3. Lv, J.; Wang, L.; Li, R.; et al. Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline–amorphous NiFe-LDH for oxygen evolution reaction. ACS. Catal. 2021, 11, 14338-51.
4. Zhai, P.; Xia, M.; Wu, Y.; et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.
5. Zhang, Y.; Zhao, M.; Wu, J.; et al. Construction of Pt Single-Atom and Cluster/FeOOH synergistic active sites for efficient electrocatalytic hydrogen evolution reaction. ACS. Catal. 2024, 14, 7867-76.
6. Otto, F. E. L.; Skeie, R. B.; Fuglestvedt, J. S.; Berntsen, T.; Allen, M. R. Assigning historic responsibility for extreme weather events. Nature. Clim. Change. 2017, 7, 757-9.
7. Vijayapradeep, S.; Kumar, R. S.; Karthikeyan, S.; Ramakrishnan, S.; Yoo, D. J. Constructing micro-nano rod-shaped iron-molybdenum oxide heterojunctions to enhance overall water electrolysis. Mater. Today. Chem. 2024, 36, 101934.
8. Gao, X.; Chen, Y.; Wang, Y.; et al. Next-generation green hydrogen: progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nanomicro. Lett. 2024, 16, 237.
9. Yu, B.; Tan, J.; Zhang, S. Uncertainties in the technological pathway towards low-carbon freight transport under carbon neutral target in China. Appl. Energy. 2024, 365, 123272.
10. Lei, H.; Wan, Q.; Tan, S.; Wang, Z.; Mai, W. Pt-Quantum-Dot-Modified Sulfur-Doped NiFe layered double hydroxide for High-Current-Density alkaline water splitting at industrial temperature. Adv. Mater. 2023, 35, e2208209.
11. Wang, L.; Xia, M.; Wang, H.; et al. Greening ammonia toward the solar ammonia refinery. Joule 2018, 2, 1055-74.
12. Wu, Q.; Shen, C.; Rui, N.; Sun, K.; Liu, C. Experimental and theoretical studies of CO2 hydrogenation to methanol on Ru/In2O3. J. CO2. Util. 2021, 53, 101720.
13. Qiu, Z.; Du, T.; Yue, Q.; et al. A multi-parameters evaluation on exergy for hydrogen metallurgy. Energy 2023, 281, 128279.
14. Zeng, Y.; Zhao, M.; Zeng, H.; et al. Recent progress in advanced catalysts for electrocatalytic hydrogenation of organics in aqueous conditions. eScience 2023, 3, 100156.
15. Sun, S.; Wang, T.; Qian, K.; et al. Tailoring cation vacancies in Co, Ni phosphides for efficient overall water splitting. Int. J. Hydrog. Energy. 2022, 47, 39731-42.
16. Xu, B.; Liang, J.; Sun, X.; Xiong, X. Designing electrocatalysts for seawater splitting: surface/interface engineering toward enhanced electrocatalytic performance. Green. Chem. 2023, 25, 3767-90.
17. Gultom, N. S.; Abdullah, H.; Hsu, C.; Kuo, D. Activating nickel iron layer double hydroxide for alkaline hydrogen evolution reaction and overall water splitting by electrodepositing nickel hydroxide. Chem. Eng. J. 2021, 419, 129608.
18. Guo, T.; Li, L.; Wang, Z. Recent development and future perspectives of amorphous transition metal‐based electrocatalysts for oxygen evolution reaction. Adv. Energy. Mater. 2022, 12, 2200827.
19. Li, X.; Zhang, H.; Hu, Q.; et al. Amorphous NiFe oxide-based nanoreactors for efficient electrocatalytic water oxidation. Angew. Chem. Int. Ed. Engl. 2023, 62, e202300478.
20. Wei, J.; Zhou, M.; Long, A.; et al. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nanomicro. Lett. 2018, 10, 75.
21. Dao, H. T.; Hoa, V. H.; Sidra, S.; Mai, M.; Zharnikov, M.; Kim, D. H. Dual efficiency enhancement in overall water splitting with defect-rich and Ru atom-doped NiFe LDH nanosheets on NiCo2O4 nanowires. Chem. Eng. J. 2024, 485, 150054.
22. Zhang, T.; Wu, M.; Yan, D.; et al. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano. Energy. 2018, 43, 103-9.
23. Zhong, W.; Li, W.; Yang, C.; et al. Interfacial electron rearrangement: Ni activated Ni(OH)2 for efficient hydrogen evolution. J. Energy. Chem. 2021, 61, 236-42.
24. Lu, L.; Zhang, Y.; Chen, Z.; et al. Synergistic promotion of HER and OER by alloying ternary Zn-Co-Ni nanoparticles in N-doped carbon interfacial structures. Chin. J. Catal. 2022, 43, 1316-23.
25. Chukwuneke, C. E.; Kawashima, K.; Li, H.; et al. Electrochemically engineered domain: nickel–hydroxide/nickel nitride composite for alkaline HER electrocatalysis. J. Mater. Chem. A. 2024, 12, 1654-61.
26. Huang, Z. F.; Song, J.; Li, K.; et al. Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-ph-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 1359-65.
27. Bodhankar, P. M.; Sarawade, P. B.; Singh, G.; Vinu, A.; Dhawale, D. S. Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting. J. Mater. Chem. A. 2021, 9, 3180-208.
28. Yao, H.; Le, F.; Jia, W.; et al. Dual electronic modulations on NiFeV Hydroxide@FeOx boost electrochemical overall water splitting. Small 2023, 19, e2301294.
29. Han, C.; Ji, Z.; Zhu, Y.; et al. Construction of Ni3S2 -NixPy /NF@NiFe LDH with heterogeneous interface to accelerate catalytic kinetics of overall water splitting. Mater. Res. Lett. 2022, 10, 762-70.
30. Mohammed-ibrahim, J. A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. J. Power. Sources. 2020, 448, 227375.
31. Huang, G.; Li, Y.; Chen, R.; et al. Electrochemically formed PtFeNi alloy nanoparticles on defective NiFe LDHs with charge transfer for efficient water splitting. Chin. J. Catal. 2022, 43, 1101-10.
32. Chen, G.; Wang, T.; Zhang, J.; et al. Accelerated hydrogen evolution kinetics on nife-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 2018, 30.
33. Chen, Y.; Li, J.; Liu, T.; et al. Constructing robust NiFe LDHs–NiFe alloy gradient hybrid bifunctional catalyst for overall water splitting: one-step electrodeposition and surface reconstruction. Rare. Met. 2023, 42, 2272-83.
34. Zhang, M.; Wang, B.; Sun, H.; et al. Electronic modulation of FeOOH coupled NiFe-LDH for highly efficient alkaline water oxidation at high current density. Int. J. Hydrog. Energy. 2024, 60, 1215-23.
35. Tang, Y.; Liu, Q.; Dong, L.; Wu, H. B.; Yu, X. Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction. Appl. Catal. B:. Environ. 2020, 266, 118627.
36. Yaseen, W.; Xie, M.; Yusuf, B. A.; et al. Anchoring Ni(OH)(2)-CeO(x) heterostructure on FeOOH-modified nickel-mesh for efficient alkaline water-splitting performance with improved stability under quasi-industrial conditions. Small 2024, 20, e2403971.
37. Wang, B.; Sun, H.; Chen, M.; et al. Ru single-atom regulated Ni(OH)2 nanowires coupled with FeOOH to achieve highly efficient overall water splitting at industrial current density. Chem. Eng. J. 2024, 479, 147500.
38. Yu, Z.; Sun, Q.; Zhang, L.; et al. Research progress of amorphous catalysts in the field of electrocatalysis. Microstructures 2024, 4, 2024022.
39. Han, H. G.; Choi, J. W.; Son, M.; Kim, K. C. Unlocking power of neighboring vacancies in boosting hydrogen evolution reactions on two-dimensional NiPS3 monolayer. eScience 2024, 4, 100204.
40. Meng, L.; Zhang, L.; Liu, S.; Wang, F.; Wu, H. Mo0.2Ni0.8N/CeO2 heterojunction as bifunctional electrocatalysts for overall urea-water electrolysis. Int. J. Hydrog. Energy. 2023, 48, 33383-92.
41. Pan, Z.; Yaseen, M.; Kang, S. P.; Zhan, Y. Designing highly efficient 3D porous Ni-Fe sulfide nanosheets based catalyst for the overall water splitting through component regulation. J. Colloid. Interface. Sci. 2022, 616, 422-32.
42. Sun, H.; Chen, H.; Humayun, M.; et al. Unlocking the catalytic potential of platinum single atoms for industry‐level current density chlorine tolerance hydrogen generation. Adv. Funct. Materials. 2024, 34, 2408872.
43. Zhu, Y.; Chen, Y.; Feng, Y.; Meng, X.; Xia, J.; Zhang, G. Constructing Ru-O-TM bridge in NiFe-LDH enables high current hydrazine-assisted H2 production. Adv. Mater. 2024, 36, e2401694.
44. Wang, X.; Tuo, Y.; Zhou, Y.; Wang, D.; Wang, S.; Zhang, J. Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation. Chem. Eng. J. 2021, 403, 126297.
45. Sun, H.; Li, L.; Humayun, M.; et al. Achieving highly efficient pH-universal hydrogen evolution by superhydrophilic amorphous/crystalline Rh(OH)3/NiTe coaxial nanorod array electrode. Appl. Catal. B:. Environ. 2022, 305, 121088.
46. Yang, Y.; Xie, Y.; Yu, Z.; et al. Self-supported NiFe-LDH@CoSx nanosheet arrays grown on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. 2021, 419, 129512.
47. Chen, Z.; Li, X.; Zhao, J.; et al. Stabilizing pt single atoms through Pt-Se electron bridges on vacancy-enriched nickel selenide for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. Engl. 2023, 62, e202308686.
48. Tan, L.; Wang, H.; Qi, C.; et al. Regulating Pt electronic properties on NiFe layered double hydroxide interface for highly efficient alkaline water splitting. Appl. Catal. B:. Environ. 2024, 342, 123352.
49. Zhang, Q.; Xiao, W.; Fu, H. C.; et al. Unraveling the mechanism of self-repair of NiFe-based electrocatalysts by dynamic exchange of iron during the oxygen evolution reaction. ACS. Catal. 2023, 13, 14975-86.
50. Li, X.; Liu, X.; Zhang, C.; et al. A corrosion-etching strategy for fabricating RuO2 coupled with defective NiFeZn(OH)x for a highly efficient hydrogen evolution reaction. J. Mater. Chem. A. 2022, 10, 20453-63.
51. Jiang, S.; Zhang, R.; Liu, H.; et al. Promoting formation of oxygen vacancies in two-dimensional cobalt-doped ceria nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 6461-6.
52. Qin, Q.; Jang, H.; Jiang, X.; et al. Constructing interfacial oxygen vacancy and ruthenium Lewis acid-base pairs to boost the alkaline hydrogen evolution reaction kinetics. Angew. Chem. Int. Ed. Engl. 2024, 63, e202317622.
53. An, C.; Wang, S.; Lin, L.; Ding, X.; Deng, Q.; Hu, N. Construction and ultrasonic inspection of the high-capacity Li-ion battery based on the MnO2 decorated by Au nanoparticles anode. Microstructures 2024, 4, 2024003.
54. Zhang, H.; Wu, L.; Feng, R.; et al. Oxygen vacancies unfold the catalytic potential of NiFe-Layered double hydroxides by promoting their electronic transport for oxygen evolution reaction. ACS. Catal. 2023, 13, 6000-12.
55. Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.
56. Liu, X.; Wang, R.; Chen, Y.; et al. Inhibitor-regulated corrosion strategy towards synthesizing cauliflower-like amorphous RuFe-hydroxides as advanced hydrogen evolution reaction catalysts. Int. J. Hydrog. Energy. 2023, 48, 9333-43.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.