REFERENCES

1. Mchugh, P. J.; Stergiou, A. D.; Symes, M. D. Decoupled electrochemical water splitting: from fundamentals to applications. Adv. Energy. Mater. 2020, 10, 2002453.

2. He, X.; Han, X.; Zhou, X.; et al. Electronic modulation with Pt-incorporated NiFe layered double hydroxide for ultrastable overall water splitting at 1000 mA·cm−2. Appl. Catal. B:. Environ. 2023, 331, 122683.

3. Lv, J.; Wang, L.; Li, R.; et al. Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline–amorphous NiFe-LDH for oxygen evolution reaction. ACS. Catal. 2021, 11, 14338-51.

4. Zhai, P.; Xia, M.; Wu, Y.; et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.

5. Zhang, Y.; Zhao, M.; Wu, J.; et al. Construction of Pt Single-Atom and Cluster/FeOOH synergistic active sites for efficient electrocatalytic hydrogen evolution reaction. ACS. Catal. 2024, 14, 7867-76.

6. Otto, F. E. L.; Skeie, R. B.; Fuglestvedt, J. S.; Berntsen, T.; Allen, M. R. Assigning historic responsibility for extreme weather events. Nature. Clim. Change. 2017, 7, 757-9.

7. Vijayapradeep, S.; Kumar, R. S.; Karthikeyan, S.; Ramakrishnan, S.; Yoo, D. J. Constructing micro-nano rod-shaped iron-molybdenum oxide heterojunctions to enhance overall water electrolysis. Mater. Today. Chem. 2024, 36, 101934.

8. Gao, X.; Chen, Y.; Wang, Y.; et al. Next-generation green hydrogen: progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nanomicro. Lett. 2024, 16, 237.

9. Yu, B.; Tan, J.; Zhang, S. Uncertainties in the technological pathway towards low-carbon freight transport under carbon neutral target in China. Appl. Energy. 2024, 365, 123272.

10. Lei, H.; Wan, Q.; Tan, S.; Wang, Z.; Mai, W. Pt-Quantum-Dot-Modified Sulfur-Doped NiFe layered double hydroxide for High-Current-Density alkaline water splitting at industrial temperature. Adv. Mater. 2023, 35, e2208209.

11. Wang, L.; Xia, M.; Wang, H.; et al. Greening ammonia toward the solar ammonia refinery. Joule 2018, 2, 1055-74.

12. Wu, Q.; Shen, C.; Rui, N.; Sun, K.; Liu, C. Experimental and theoretical studies of CO2 hydrogenation to methanol on Ru/In2O3. J. CO2. Util. 2021, 53, 101720.

13. Qiu, Z.; Du, T.; Yue, Q.; et al. A multi-parameters evaluation on exergy for hydrogen metallurgy. Energy 2023, 281, 128279.

14. Zeng, Y.; Zhao, M.; Zeng, H.; et al. Recent progress in advanced catalysts for electrocatalytic hydrogenation of organics in aqueous conditions. eScience 2023, 3, 100156.

15. Sun, S.; Wang, T.; Qian, K.; et al. Tailoring cation vacancies in Co, Ni phosphides for efficient overall water splitting. Int. J. Hydrog. Energy. 2022, 47, 39731-42.

16. Xu, B.; Liang, J.; Sun, X.; Xiong, X. Designing electrocatalysts for seawater splitting: surface/interface engineering toward enhanced electrocatalytic performance. Green. Chem. 2023, 25, 3767-90.

17. Gultom, N. S.; Abdullah, H.; Hsu, C.; Kuo, D. Activating nickel iron layer double hydroxide for alkaline hydrogen evolution reaction and overall water splitting by electrodepositing nickel hydroxide. Chem. Eng. J. 2021, 419, 129608.

18. Guo, T.; Li, L.; Wang, Z. Recent development and future perspectives of amorphous transition metal‐based electrocatalysts for oxygen evolution reaction. Adv. Energy. Mater. 2022, 12, 2200827.

19. Li, X.; Zhang, H.; Hu, Q.; et al. Amorphous NiFe oxide-based nanoreactors for efficient electrocatalytic water oxidation. Angew. Chem. Int. Ed. Engl. 2023, 62, e202300478.

20. Wei, J.; Zhou, M.; Long, A.; et al. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nanomicro. Lett. 2018, 10, 75.

21. Dao, H. T.; Hoa, V. H.; Sidra, S.; Mai, M.; Zharnikov, M.; Kim, D. H. Dual efficiency enhancement in overall water splitting with defect-rich and Ru atom-doped NiFe LDH nanosheets on NiCo2O4 nanowires. Chem. Eng. J. 2024, 485, 150054.

22. Zhang, T.; Wu, M.; Yan, D.; et al. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano. Energy. 2018, 43, 103-9.

23. Zhong, W.; Li, W.; Yang, C.; et al. Interfacial electron rearrangement: Ni activated Ni(OH)2 for efficient hydrogen evolution. J. Energy. Chem. 2021, 61, 236-42.

24. Lu, L.; Zhang, Y.; Chen, Z.; et al. Synergistic promotion of HER and OER by alloying ternary Zn-Co-Ni nanoparticles in N-doped carbon interfacial structures. Chin. J. Catal. 2022, 43, 1316-23.

25. Chukwuneke, C. E.; Kawashima, K.; Li, H.; et al. Electrochemically engineered domain: nickel–hydroxide/nickel nitride composite for alkaline HER electrocatalysis. J. Mater. Chem. A. 2024, 12, 1654-61.

26. Huang, Z. F.; Song, J.; Li, K.; et al. Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-ph-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 1359-65.

27. Bodhankar, P. M.; Sarawade, P. B.; Singh, G.; Vinu, A.; Dhawale, D. S. Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting. J. Mater. Chem. A. 2021, 9, 3180-208.

28. Yao, H.; Le, F.; Jia, W.; et al. Dual electronic modulations on NiFeV Hydroxide@FeOx boost electrochemical overall water splitting. Small 2023, 19, e2301294.

29. Han, C.; Ji, Z.; Zhu, Y.; et al. Construction of Ni3S2 -NixPy /NF@NiFe LDH with heterogeneous interface to accelerate catalytic kinetics of overall water splitting. Mater. Res. Lett. 2022, 10, 762-70.

30. Mohammed-ibrahim, J. A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. J. Power. Sources. 2020, 448, 227375.

31. Huang, G.; Li, Y.; Chen, R.; et al. Electrochemically formed PtFeNi alloy nanoparticles on defective NiFe LDHs with charge transfer for efficient water splitting. Chin. J. Catal. 2022, 43, 1101-10.

32. Chen, G.; Wang, T.; Zhang, J.; et al. Accelerated hydrogen evolution kinetics on nife-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 2018, 30.

33. Chen, Y.; Li, J.; Liu, T.; et al. Constructing robust NiFe LDHs–NiFe alloy gradient hybrid bifunctional catalyst for overall water splitting: one-step electrodeposition and surface reconstruction. Rare. Met. 2023, 42, 2272-83.

34. Zhang, M.; Wang, B.; Sun, H.; et al. Electronic modulation of FeOOH coupled NiFe-LDH for highly efficient alkaline water oxidation at high current density. Int. J. Hydrog. Energy. 2024, 60, 1215-23.

35. Tang, Y.; Liu, Q.; Dong, L.; Wu, H. B.; Yu, X. Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction. Appl. Catal. B:. Environ. 2020, 266, 118627.

36. Yaseen, W.; Xie, M.; Yusuf, B. A.; et al. Anchoring Ni(OH)(2)-CeO(x) heterostructure on FeOOH-modified nickel-mesh for efficient alkaline water-splitting performance with improved stability under quasi-industrial conditions. Small 2024, 20, e2403971.

37. Wang, B.; Sun, H.; Chen, M.; et al. Ru single-atom regulated Ni(OH)2 nanowires coupled with FeOOH to achieve highly efficient overall water splitting at industrial current density. Chem. Eng. J. 2024, 479, 147500.

38. Yu, Z.; Sun, Q.; Zhang, L.; et al. Research progress of amorphous catalysts in the field of electrocatalysis. Microstructures 2024, 4, 2024022.

39. Han, H. G.; Choi, J. W.; Son, M.; Kim, K. C. Unlocking power of neighboring vacancies in boosting hydrogen evolution reactions on two-dimensional NiPS3 monolayer. eScience 2024, 4, 100204.

40. Meng, L.; Zhang, L.; Liu, S.; Wang, F.; Wu, H. Mo0.2Ni0.8N/CeO2 heterojunction as bifunctional electrocatalysts for overall urea-water electrolysis. Int. J. Hydrog. Energy. 2023, 48, 33383-92.

41. Pan, Z.; Yaseen, M.; Kang, S. P.; Zhan, Y. Designing highly efficient 3D porous Ni-Fe sulfide nanosheets based catalyst for the overall water splitting through component regulation. J. Colloid. Interface. Sci. 2022, 616, 422-32.

42. Sun, H.; Chen, H.; Humayun, M.; et al. Unlocking the catalytic potential of platinum single atoms for industry‐level current density chlorine tolerance hydrogen generation. Adv. Funct. Materials. 2024, 34, 2408872.

43. Zhu, Y.; Chen, Y.; Feng, Y.; Meng, X.; Xia, J.; Zhang, G. Constructing Ru-O-TM bridge in NiFe-LDH enables high current hydrazine-assisted H2 production. Adv. Mater. 2024, 36, e2401694.

44. Wang, X.; Tuo, Y.; Zhou, Y.; Wang, D.; Wang, S.; Zhang, J. Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation. Chem. Eng. J. 2021, 403, 126297.

45. Sun, H.; Li, L.; Humayun, M.; et al. Achieving highly efficient pH-universal hydrogen evolution by superhydrophilic amorphous/crystalline Rh(OH)3/NiTe coaxial nanorod array electrode. Appl. Catal. B:. Environ. 2022, 305, 121088.

46. Yang, Y.; Xie, Y.; Yu, Z.; et al. Self-supported NiFe-LDH@CoSx nanosheet arrays grown on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. 2021, 419, 129512.

47. Chen, Z.; Li, X.; Zhao, J.; et al. Stabilizing pt single atoms through Pt-Se electron bridges on vacancy-enriched nickel selenide for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. Engl. 2023, 62, e202308686.

48. Tan, L.; Wang, H.; Qi, C.; et al. Regulating Pt electronic properties on NiFe layered double hydroxide interface for highly efficient alkaline water splitting. Appl. Catal. B:. Environ. 2024, 342, 123352.

49. Zhang, Q.; Xiao, W.; Fu, H. C.; et al. Unraveling the mechanism of self-repair of NiFe-based electrocatalysts by dynamic exchange of iron during the oxygen evolution reaction. ACS. Catal. 2023, 13, 14975-86.

50. Li, X.; Liu, X.; Zhang, C.; et al. A corrosion-etching strategy for fabricating RuO2 coupled with defective NiFeZn(OH)x for a highly efficient hydrogen evolution reaction. J. Mater. Chem. A. 2022, 10, 20453-63.

51. Jiang, S.; Zhang, R.; Liu, H.; et al. Promoting formation of oxygen vacancies in two-dimensional cobalt-doped ceria nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 6461-6.

52. Qin, Q.; Jang, H.; Jiang, X.; et al. Constructing interfacial oxygen vacancy and ruthenium Lewis acid-base pairs to boost the alkaline hydrogen evolution reaction kinetics. Angew. Chem. Int. Ed. Engl. 2024, 63, e202317622.

53. An, C.; Wang, S.; Lin, L.; Ding, X.; Deng, Q.; Hu, N. Construction and ultrasonic inspection of the high-capacity Li-ion battery based on the MnO2 decorated by Au nanoparticles anode. Microstructures 2024, 4, 2024003.

54. Zhang, H.; Wu, L.; Feng, R.; et al. Oxygen vacancies unfold the catalytic potential of NiFe-Layered double hydroxides by promoting their electronic transport for oxygen evolution reaction. ACS. Catal. 2023, 13, 6000-12.

55. Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.

56. Liu, X.; Wang, R.; Chen, Y.; et al. Inhibitor-regulated corrosion strategy towards synthesizing cauliflower-like amorphous RuFe-hydroxides as advanced hydrogen evolution reaction catalysts. Int. J. Hydrog. Energy. 2023, 48, 9333-43.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/