1. Ackerman D. Anthropogenic impacts on high-latitude ecosystems: Shrubs will grow. Will nitrogen flow? Retrieved from the University of Minnesota Digital Conservancy, https://hdl.handle.net/11299/206349 [Last accessed on 14 Dec 2020].
2. Conti J, Holtberg P, Diefenderfer J, LaRose A, Turnure JT, Westfall L. International energy outlook 2016 with projections to 2040. United States. Available from: https://doi.org/10.2172/1296780 [Last accessed on 14 Dec 2020].
3. Manu S, Shukla Y, Rawal R, Thomas LE, de Dear R. Field studies of thermal comfort across multiple climate zones for the subcontinent: India Model for Adaptive Comfort (IMAC). Building and Environment 2016;98:55-70.
4. Paone A, Bacher J. The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art. Energies 2018;11:953.
5. Du J, Yu C, Pan W. Multiple influencing factors analysis of household energy consumption in high-rise residential buildings: Evidence from Hong Kong. Build Simul 2020;13:753-69.
6. Hu S, Yan D, Guo S, Cui Y, Dong B. A survey on energy consumption and energy usage behavior of households and residential building in urban China. Energy and Buildings 2017;148:366-78.
8. Marcel Moshi A, Guruvasanth S, Samuel PM, Billigraham SS. Effective techniques for energy conservation in buildings - A comprehensive review. Materials Today: Proceedings 2020; doi: 10.1016/j.matpr.2020.02.172.
9. Chwieduk DA. Towards modern options of energy conservation in buildings. Renewable Energy 2017;101:1194-202.
10. Lehner M, Mont O, Heiskanen E. Nudging - A promising tool for sustainable consumption behaviour? Journal of Cleaner Production 2016;134:166-77.
12. Laaroussi Y, Bahrar M, Elmankibi M, Draoui A, Si-larbi A. Occupant behaviour: a major issue for building energy performance. IOP Conf Ser:Mater Sci Eng 2019;609:072050.
13. Serale G, Fiorentini M, Capozzoli A, Bernardini D, Bemporad A. Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities. Energies 2018;11:631.
14. Shareef H, Ahmed MS, Mohamed A, Al Hassan E. Review on Home Energy Management System Considering Demand Responses, Smart Technologies, and Intelligent Controllers. IEEE Access 2018;6:24498-509.
15. Hannan MA, Faisal M, Ker PJ, et al. A Review of Internet of Energy Based Building Energy Management Systems: Issues and Recommendations. IEEE Access 2018;6:38997-9014.
16. Smarra F, Jain A, de Rubeis T, Ambrosini D, D’Innocenzo A, Mangharam R. Data-driven model predictive control using random forests for building energy optimization and climate control. Applied energy 2018;226:1252-72.
17. Yang S, Wan MP, Ng BF, et al. A state-space thermal model incorporating humidity and thermal comfort for model predictive control in buildings. Energy and Buildings 2018;170:25-39.
18. Godina R, Rodrigues EM, Pouresmaeil E, Catalão JP. Optimal residential model predictive control energy management performance with PV microgeneration. Computers & Operations Research 2018;96:143-56.
19. Martinaitis V, Zavadskas EK, Motuzienė V, Vilutienė T. Importance of occupancy information when simulating energy demand of energy efficient house: A case study. Energy and Buildings 2015;101:64-75.
20. Delzendeh E, Wu S, Lee A, Zhou Y. The impact of occupants’ behaviours on building energy analysis: A research review. Renewable and Sustainable Energy Reviews 2017;80:1061-71.
21. Rafsanjani HN, Ahn C. Linking Building Energy-Load Variations with Occupants’ Energy-Use Behaviors in Commercial Buildings: Non-Intrusive Occupant Load Monitoring (NIOLM). Procedia Engineering 2016;145:532-9.
22. Niamir L, Filatova T, Voinov A, Bressers H. Transition to low-carbon economy: Assessing cumulative impacts of individual behavioral changes. Energy Policy 2018;118:325-45.
23. Koop SHA, Van Dorssen AJ, Brouwer S. Enhancing domestic water conservation behaviour: A review of empirical studies on influencing tactics. J Environ Manage 2019;247:867-76.
24. Ajzen I. The theory of planned behavior. Organ Behav Hum Decis Process 1991;50:179-211.
25. Hu H, Fang W, Yu X. Enhancing individual commitment to energy conservation in organizational settings: Identity manipulation for behavioral changes. Resources, Conservation and Recycling 2020;156:104720.
26. Obaidellah UH, Danaee M, Mamun MAA, Hasanuzzaman M, Rahim NA. An application of TPB constructs on energy-saving behavioural intention among university office building occupants: a pilot study in Malaysian tropical climate. J Hous and the Built Environ 2019;34:533-69.
27. Tetlow RM, van Dronkelaar C, Beaman CP, Elmualim AA, Couling K. Identifying behavioural predictors of small power electricity consumption in office buildings. Building and Environment 2015;92:75-85.
28. Allen S, Marquart-pyatt ST. Workplace energy conservation at Michigan State University. IJSHE 2018;19:114-29.
29. Blanke J, Beder C, Klepal M. An Integrated Behavioural Model towards Evaluating and Influencing Energy Behaviour-The Role of Motivation in Behaviour Demand Response. Buildings 2017;7:119.
30. Stern PC, Kalof L, Dietz T, Guagnano GA. Values, Beliefs, and Proenvironmental Action: Attitude Formation Toward Emergent Attitude Objects1. J Appl Social Pyschol 1995;25:1611-36.
31. Sarkis AM. A comparative study of theoretical behaviour change models predicting empirical evidence for residential energy conservation behaviours. Journal of Cleaner Production 2017;141:526-37.
32. Schwartz SH. Are There Universal Aspects in the Structure and Contents of Human Values? Journal of Social Issues 1994;50:19-45.
33. Dunlap RE, Van Liere KD. The “New Environmental Paradigm”. The Journal of Environmental Education 2014;9:10-9.
34. Schwartz SH. . Normative Influences on Altruism. Advances in Experimental Social Psychology Volume 10. Elsevier; 1977. pp. 221-79.
35. Guagnano GA, Stern PC, Dietz T. Influences on Attitude-Behavior Relationships: A Natural Experiment with Curbside Recycling. J Environ Educ 1995;27:699-718.
36. Prochaska JO, Johnson S, Lee P. . The transtheoretical model of behavior change. In S. A. Shumaker, J. K. Ockene, & K. A. Riekert (Eds.), The handbook of health behavior change. Springer Publishing Company; 2009. p. 59-83.
37. Ernecoff NC, Keane CR, Albert SM. Health behavior change in advance care planning: an agent-based model. BMC Public Health 2016;16:193.
38. Michie S, van Stralen MM, West R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implement Sci 2011;6:42.
39. Hansen PG. . The BASIC Toolkit: Tools and Ethics for Applied Behavioural Insights. 2019.
40. Kahneman D. Maps of Bounded Rationality: Psychology for Behavioral Economics. American Economic Review 2003;93:1449-75.
42. Wong-parodi G, Krishnamurti T, Gluck J, Agarwal Y. Encouraging energy conservation at work: A field study testing social norm feedback and awareness of monitoring. Energy Policy 2019;130:197-205.
43. Ornaghi C, Costanza E, Kittley-davies J, Bourikas L, Aragon V, James PA. The effect of behavioural interventions on energy conservation in naturally ventilated offices. Energy Economics 2018;74:582-91.
44. Carrico AR, Riemer M. Motivating energy conservation in the workplace: An evaluation of the use of group-level feedback and peer education. Journal of Environmental Psychology 2011;31:1-13.
45. Reddy V, Bushree B, Chong M, et al. . Influencing Participant Behavior Through a Notification-Based Recommendation System. In: Ham J, Karapanos E, Morita PP, Burns CM, editors. Persuasive Technology. Cham: Springer International Publishing; 2018. pp. 113-9.
46. Curry E, Hasan S, Kouroupetroglou C, Fabritius W, ul Hassan U, Derguech W. Internet of Things Enhanced User Experience for Smart Water and Energy Management. IEEE Internet Comput 2018;22:18-28.
47. Konis K, Blessenohl S, Kedia N, Rahane V. TrojanSense, a participatory sensing framework for occupant-aware management of thermal comfort in campus buildings. Building and Environment 2020;169:106588.
48. Ma G, Lin J, Li N. Longitudinal assessment of the behavior-changing effect of app-based eco-feedback in residential buildings. Energy and Buildings 2018;159:486-94.
49. Francisco A, Truong H, Khosrowpour A, Taylor JE, Mohammadi N. Occupant perceptions of building information model-based energy visualizations in eco-feedback systems. Applied Energy 2018;221:220-8.
50. Cooper EJ. To nudge or not to nudge: promoting environmentally beneficial behaviors. (2017). Bard Center for Environmental Policy. 10. Available from: http://digitalcommons.bard.edu/bcep/10 [Last accessed on 14 Dec 2020].
51. Charlier C, Guerassimoff G, Kirakozian A, Selosse S. . Nudging electricity consumption within firms. Feedbacks from a field experiment. 2019.
53. Lassen N, Goia F, Schiavon S, Pantelic J. Field investigations of a smiley-face polling station for recording occupant satisfaction with indoor climate. Building and Environment 2020;185:107266.
54. Gulbinas R, Taylor JE. Effects of real-time eco-feedback and organizational network dynamics on energy efficient behavior in commercial buildings. Energy and Buildings 2014;84:493-500.
55. West SR, Ward JK, Wall J. Trial results from a model predictive control and optimisation system for commercial building HVAC. Energy and Buildings 2014;72:271-9.
56. Khashe S, Lucas G, Becerik-gerber B, Gratch J. Buildings with persona: Towards effective building-occupant communication. Computers in Human Behavior 2017;75:607-18.
57. Kar P, Shareef A, Kumar A, Harn KT, Kalluri B, Panda SK. ReViCEE: A recommendation based approach for personalized control, visual comfort & energy efficiency in buildings. Building and Environment 2019;152:135-44.
58. Heydarian A, Pantazis E, Carneiro JP, Gerber D, Becerik-gerber B. Lights, building, action: Impact of default lighting settings on occupant behaviour. Journal of Environmental Psychology 2016;48:212-23.
59. Miller DJ. . Behavioral opportunities for energy savings in office buildings: a London field experiment: Centre for Environmental Policy, Faculty of Natural Science, Imperial; 2013.
60. Rafsanjani HN, Ghahramani A, Nabizadeh AH. iSEA: IoT-based smartphone energy assistant for prompting energy-aware behaviors in commercial buildings. Applied Energy 2020;266:114892.
61. Iria J, Fonseca N, Cassola F, et al. A gamification platform to foster energy efficiency in office buildings. Energy and Buildings 2020;222:110101.
62. Heydarian A, Mcilvennie C, Arpan L, et al. What drives our behaviors in buildings? Building and Environment 2020;179:106928.
63. Lopes JRN, Kalid RDA, Rodríguez JLM, Ávila Filho S. A new model for assessing industrial worker behavior regarding energy saving considering the theory of planned behavior, norm activation model and human reliability. Resources, Conservation and Recycling 2019;145:268-78.
64. Reeves B, Cummings JJ, Scarborough JK, Yeykelis L. Increasing Energy Efficiency With Entertainment Media: An Experimental and Field Test of the Influence of a Social Game on Performance of Energy Behaviors. Environment and Behavior 2013;47:102-15.
65. Schakib-ekbatan K, Çakıcı FZ, Schweiker M, Wagner A. Does the occupant behavior match the energy concept of the building? Building and Environment 2015;84:142-50.
66. Sunstein CR, Reisch LA. Automatically green: Behavioral economics and environmental protection. Harv Envtl L Rev 2014;38:127.
67. Costa DL, Kahn ME. ENERGY CONSERVATION “NUDGES” AND ENVIRONMENTALIST IDEOLOGY: EVIDENCE FROM A RANDOMIZED RESIDENTIAL ELECTRICITY FIELD EXPERIMENT: Energy Conservation “Nudges” and Environmentalist Ideology. Journal of the European Economic Association 2013;11:680-702.
68. Kasperbauer T. The permissibility of nudging for sustainable energy consumption. Energy Policy 2017;111:52-7.
69. Byerly H, Balmford A, Ferraro PJ, et al. Nudging pro-environmental behavior: evidence and opportunities. Front Ecol Environ 2018;16:159-68.
70. Hilton D, Treich N, Lazzara G, Tendil P. Designing effective nudges that satisfy ethical constraints: the case of environmentally responsible behaviour. Mind Soc 2018;17:27-38.
71. Croson R, Treich N. Behavioral Environmental Economics: Promises and Challenges. Environ Resource Econ 2014;58:335-51.
72. Frederiks ER, Stenner K, Hobman EV. Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour. Renewable and Sustainable Energy Reviews 2015;41:1385-94.
73. Liu Y, Veríssimo D, Farhidi F. Using social norm to promote energy conservation in a public building. Energy and Buildings 2016;133:32-6.
74. Sunstein CR. . Behavioural economics, consumption and environmental protection. Handbook of Research on Sustainable Consumption. Edward Elgar Publishing; 2015. pp. 313-27.
75. Higham J, Cohen SA, Cavaliere CT, Reis A, Finkler W. Climate change, tourist air travel and radical emissions reduction. Journal of Cleaner Production 2016;111:336-47.
76. Goldstein NJ, Cialdini RB, Griskevicius V. A Room with a Viewpoint: Using Social Norms to Motivate Environmental Conservation in Hotels. J Consum Res 2008;35:472-82.
77. Thaler R, Benartzi S. Save More Tomorrow™: Using Behavioral Economics to Increase Employee Saving. Journal of Political Economy 2004;112:S164-87.
79. Kahn BE, Sarin RK. Modeling Ambiguity in Decisions Under Uncertainty. J CONSUM RES 1988;15:265.
80. Cropanzano R. Predictably irrational: The hidden forces that shape our decisions. By Dan Ariely, HarperCollins: New York, 2008. ISBN 978-0-06-135323-9. J Behav Decis Making 2010;23:330-1.
81. Burger JM. Increasing compliance by improving the deal: The that's-not-all technique. Journal of Personality and Social Psychology 1986;51:277-83.
82. Nolan JM, Schultz PW, Cialdini RB, Goldstein NJ, Griskevicius V. Normative social influence is underdetected. Pers Soc Psychol Bull 2008;34:913-23.
84. Stroebe W, Strack F. The Alleged Crisis and the Illusion of Exact Replication. Perspect Psychol Sci 2014;9:59-71.
85. Agha-hossein M, Tetlow R, Hadi M, et al. Providing persuasive feedback through interactive posters to motivate energy-saving behaviours. Intelligent Buildings International 2014;7:16-35.
87. Yogi S. Use of BIM-based energy simulations to analyze the impact of occupant behavior on energy performance of commercial buildings: Colorado State University; 2018. Available from: https://hdl.handle.net/10217/185735[Last accessed on 14 Dec 2020].
88. Ashouri M, Fung BC, Haghighat F, Yoshino H. Systematic approach to provide building occupants with feedback to reduce energy consumption. Energy 2020;194:116813.
89. Khosrowpour A, Jain RK, Taylor JE, Peschiera G, Chen J, Gulbinas R. A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation. Applied Energy 2018;218:304-16.
90. Pritoni M, Salmon K, Sanguinetti A, Morejohn J, Modera M. Occupant thermal feedback for improved efficiency in university buildings. Energy and Buildings 2017;144:241-50.
91. Alskaif T, Lampropoulos I, van den Broek M, van Sark W. Gamification-based framework for engagement of residential customers in energy applications. Energy Research & Social Science 2018;44:187-95.
92. Bisadi M, Akrami A, Teimourzadeh S, Aminifar F, Kargahi M, Shahidehpour M. IoT-Enabled Humans in the Loop for Energy Management Systems: Promoting Building Occupants' Participation in Optimizing Energy Consumption. IEEE Electrific Mag 2018;6:64-72.
93. Manic M, Amarasinghe K, Rodriguez-andina JJ, Rieger C. Intelligent Buildings of the Future: Cyberaware, Deep Learning Powered, and Human Interacting. EEE Ind Electron Mag 2016;10:32-49.
94. Myers E, Souza M. Social comparison nudges without monetary incentives: Evidence from home energy reports. Journal of Environmental Economics and Management 2020;101:102315.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.