1. Amjady N, Keynia F. Day ahead price forecasting of electricity markets by a mixed data model and hybrid forecast method. International Journal of Electrical Power & Energy Systems 2008;30:533-46.
2. Weron R. Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach. Chichester: Wiley; 2006.
3. Weron R. Forecasting Wholesale Electricity Prices: A Review of Time Series Models. In: Milo W, Wdowinski P, editors. FINANCIAL MARKETS: PRINCIPLES OF MODELLING, FORECASTING AND DECISION-MAKING. Lodz: FindEcon Monograph Series, WUL; 20082.
4. Weron R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting 2014;30:1030-1081.
5. Weron R, Misiorek A. Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models. International Journal of Forecasting 2008;24:744-63.
6. Cruz A, Muñoz A, Zamora JL, Espínola R. The effect of wind generation and weekday on Spanish electricity spot price forecasting. Electric Power Systems Research 2011;81:1924-35.
9. Crespo Cuaresma J, Hlouskova J, Kossmeier S, Obersteiner M. Forecasting electricity spot-prices using linear univariate time-series models. Applied Energy 2004;77:87-106.
10. Yang Z, Ce L, Lian L. Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. Applied Energy 2017;190:291-305.
11. Vilar JM, Cao R, Aneiros G. Forecasting next-day electricity demand and price using nonparametric functional methods. International Journal of Electrical Power & Energy Systems 2012;39:48-55.
12. Knittel CR, Roberts MR. An empirical examination of restructured electricity prices. Energy Economics 2005;27:791-817.
13. Garcia RC, Contreras J, van Akkeren M, Garcia JBC. A GARCH forecasting model to predict day-ahead electricity prices. IEEE Transactions on Power Systems 2005;20:867-74.
14. Diongue AK, Guégan D, Vignal B. Forecasting electricity spot market prices with a k-factor GIGARCH process. Applied Energy 2009;86:505-10.
15. Nogales FJ, Contreras J, Conejo AJ, Espinola R. Forecasting Next-Day Electricity Prices by Time Series Models. IEEE Power Engineering Review 2002;22:58-8.
16. Szkuta BR, Sanabria LA, Dillon TS. Electricity price short-term forecasting using artificial neural networks. IEEE Transactions on Power Systems 1999;14:851-7.
17. Wang AJ, Ramsay B. A neural network based estimator for electricity spot-pricing with particular reference to weekend and public holidays. Neurocomputing 1998;23:47-57.
18. Li Zhang, Luh PB, Kasiviswanathan K. Energy clearing price prediction and confidence interval estimation with cascaded neural networks. IEEE Transactions on Power Systems 2003;18:99-105.
19. Peng L, Liu S, Liu R, Wang L. Effective long short-term memory with differential evolution algorithm for electricity price prediction. Energy 2018;162:1301-14.
20. Lago J, De Ridder F, De Schutter B. Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms. Applied Energy 2018;221:386-405.
21. Zhu Y, Dai R, Liu G, Wang Z, Lu S. Power Market Price Forecasting via Deep Learning. In: IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society; 2018. pp. 4935-39.
22. Jiang L, Hu G. Day-Ahead Price Forecasting for Electricity Market using Long-Short Term Memory Recurrent Neural Network. In: 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV); 2018. pp. 949-54.
23. Brusaferri A, Matteucci M, Portolani P, Vitali A. Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices. Applied Energy 2019;250:1158-75.
24. Peng L, Zhu Q, Lv SX, Wang L. Effective long short-term memory with fruit fly optimization algorithm for time series forecasting. Soft Computing 2020;10.
26. Tan Z, Zhang J, Wang J, Xu J. Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models. Applied Energy 2010;87:3606-10.
27. Bolukbasi T, Chang KW, Zou J, Saligrama V, Kalai A. Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. NIPS'16. Red Hook, NY, USA: Curran Associates Inc.; 2016. pp. 4356-4364.
28. Caliskan A, Bryson J, Narayanan A. Semantics derived automatically from language corpora contain human-like biases. Science 2017;356:183-6.
29. Kilbertus N, Rojas-Carulla M, Parascandolo G, Hardt M, Janzing D, et al. Avoiding Discrimination through Causal Reasoning. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. NIPS'17. Red Hook, NY, USA: Curran Associates Inc.; 2017. pp. 656-666.
30. Hardt M, Price E, Srebro N. Equality of Opportunity in Supervised Learning. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. NIPS'16. Red Hook, NY, USA: Curran Associates Inc.; 2016. pp. 3323-3331.
31. Buolamwini J, Gebru T. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. In: Friedler SA, Wilson C, editors. Proceedings of the 1st Conference on Fairness, Accountability and Transparency. vol. 81 of Proceedings of Machine Learning Research. New York, NY, USA: PMLR; 2018. pp. 77-91.
32. Zemel R, Wu Y, Swersky K, Pitassi T, Dwork C. Learning Fair Representations. In: Dasgupta S, McAllester D, editors. Proceedings of the 30th International Conference on Machine Learning. vol. 28 of Proceedings of Machine Learning Research. Atlanta, Georgia, USA: PMLR; 2013. pp. 325-33.
33. Amini A, Soleimany AP, Schwarting W, Bhatia SN, Rus D. Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. AIES '19. New York, NY, USA: Association for Computing Machinery; 2019. pp. 289-295.
34. Nguyen GH, Bouzerdoum A, Phung SL. A supervised learning approach for imbalanced data sets. In: 2008 19th International Conference on Pattern Recognition; 2008. pp. 1-4.
35. Sattigeri P, Hoffman SC, Chenthamarakshan V, Varshney KR. Fairness GAN: Generating datasets with fairness properties using a generative adversarial network. IBM Journal of Research and Development 2019;63:31-9.
36. Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Computation 1997;9:1735-80.
37. Kalchbrenner N, Blunsom P. Recurrent Continuous Translation Models. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Seattle, Washington, USA: Association for Computational Linguistics; 2013. pp. 1700-9. Available from: https://www.aclweb.org/anthology/D13-1176.
38. Cho K, van Merrienboer B, Bahdanau D, Bengio Y. On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. CoRR 2014 Oct. Available from: http://arxiv.org/abs/1409.1259..
39. Bahdanau D, Cho K, Bengio Y. Neural Machine Translation by Jointly Learning to Align and Translate; 2016.
40. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. In: Bengio Y, LeCun Y, editors. 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings; 2015. Available from: http://arxiv.org/abs/1412.6980.
41. Bottou L. Large-Scale Machine Learning with Stochastic Gradient Descent. In: Lechevallier Y, Saporta G, editors. Proceedings of COMPSTAT’2010. Heidelberg: Physica-Verlag HD; 2010. pp. 177-86.
42. Yao Y, Rosasco L, Caponnetto A. On Early Stopping in Gradient Descent Learning. Constructive Approximation 2007;26:289-315.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.