1. Zhang Z, Fan J, Tang B, et al. Microstructural evolution and FCC twinning behavior during hot deformation of high temperature titanium alloy Ti65. J Mater Sci Technol 2020;49:56-69.
2. Liu H, Wang H, Ren L, Qiu D, Yang K. Antibacterial copper-bearing titanium alloy prepared by laser powder bed fusion for superior mechanical performance. J Mater Sci Technol 2023;132:100-9.
3. Gao P, Fu M, Zhan M, Lei Z, Li Y. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: a review. J Mater Sci Technol 2020;39:56-73.
4. Boyer RR. An overview on the use of titanium in the aerospace industry. Mat Sci Eng A 1996;213:103-14.
5. Wu X, Makineni SK, Liebscher CH, et al. Unveiling the Re effect in Ni-based single crystal superalloys. Nat Commun 2020;11:389.
6. Cui C, Hu BM, Zhao L, Liu S. Titanium alloy production technology, market prospects and industry development. Mater Design 2011;32:1684-91.
7. Sattar M, Othman AR, Kamaruddin S, Akhtar M, Khan R. Limitations on the computational analysis of creep failure models: a review. Eng Fail Anal 2022;134:105968.
8. Jelwan J, Chowdhury M, Pearce G. Design for creep: a critical examination of some methods. Eng Fail Anal 2013;27:350-72.
9. Barboza MJR, Neto CM, Silva CRM. Creep mechanisms and physical modeling for Ti–6Al–4V. Mat Sci Eng A 2004;369:201-9.
10. Bolton J. The potential for major extrapolation of creep rupture and creep strain data. Mate High Temp 2014;31:109-20.
11. Bolton J. Reliable analysis and extrapolation of creep rupture data. Int J Pres Ves Pip 2017;157:1-19.
12. MacLachlan DW, Knowles DM. Modelling and prediction of the stress rupture behaviour of single crystal superalloys. Mat Sci Eng A 2001;302:275-85.
13. Prasad SC, Rajagopal KR, Rao IJ. A continuum model for the anisotropic creep of single crystal nickel-based superalloys. Acta Mater 2006;54:1487-500.
14. Oruganti R, Karadge M, Swaminathan S. Damage mechanics-based creep model for 9–10% Cr ferritic steels. Acta Mater 2011;59:2145-55.
15. Zhang K, Tan JP, Sun W, Nikbin K, Tu ST. Determination of multiaxial stress rupture criteria for creeping materials: a critical analysis of different approaches. J Mater Sci Technol 2023;137:14-25.
16. Larson FR, Miller J. A time-temperature relationship for rupture and creep stresses. Trans ASME 1952;74:765-71.
17. Dyson BF. Microstructure based creep constitutive model for precipitation strengthened alloys: theory and application. Mater Sci Technol 2009;25:213-20.
18. Zhou H, Li J, Liu J, et al. Significant reduction in creep life of P91 steam pipe elbow caused by an aberrant microstructure after short-term service. Sci Rep 2024;14:5216.
19. Dang YY, Zhao XB, Yuan Y, et al. Predicting long-term creep-rupture property of Inconel 740 and 740H. Mater High Temp 2016;33:1-5.
20. Kim WG, Yin SN, Lee GG, Kim YW, Kim SJ. Creep oxidation behaviour and creep strength prediction for Alloy 617. Int J Press Ves Pip 2010;87:289-95.
21. Vladimirov IN, Reese S, Eggeler G. Constitutive modelling of the anisotropic creep behaviour of nickel-base single crystal superalloys. Int J Mech Sci 2009;51:305-13.
22. Hart GLW, Mueller T, Toher C, Curtarolo S. Machine learning for alloys. Nat Rev Mater 2021;6:730-55.
23. Shin D, Yamamoto Y, Brady MP, Lee S, Haynes JA. Modern data analytics approach to predict creep of high-temperature alloys. Acta Mater 2019;168:321-30.
24. Zhou CL, Yuan RH, Liao WJ, et al. Creep rupture life predictions for Ni-based single crystal superalloys with automated machine learning. Rare Met 2024;43:2884-90.
25. Mamun O, Wenzlick M, Sathanur A, Hawk J, Devanathan R. Machine learning augmented predictive and generative model for rupture life in ferritic and austenitic steels. Npj Mat Degrad 2021;5:20.
26. Chen C, Wang Q, Dong C, Zhang Y, Dong H. Composition rules of Ni-base single crystal superalloys and its influence on creep properties via a cluster formula approach. Sci Rep 2020;10:21621.
27. Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C. Machine learning in materials informatics: recent applications and prospects. npj Comput Mater 2017;3:54.
28. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature 2018;559:547-55.
29. Biswas S, Fernandez Castellanos D, Zaiser M. Prediction of creep failure time using machine learning. Sci Rep 2020;10:16910.
30. Venkatesh V, Rack HJ. A neural network approach to elevated temperature creep–fatigue life prediction. Int J Fatigue 1999;21:225-34.
31. Liu Y, Wu J, Wang Z, et al. Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning. Acta Mater 2020;195:454-67.
32. Zhou C, Yuan R, Su B, et al. Creep rupture life prediction of high-temperature titanium alloy using cross-material transfer learning. J Mater Sci Technol 2024;178:39-47.
33. Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli LM. SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys Rev Mater 2018;2:083802.
34. Evans RW, Hull RJ, Wilshire B. The effects of alpha-case formation on the creep fracture properties of the high-temperature titanium alloy IMI834. J Mater Proc Technol 1996;56:492-501.
35. Zheng Z, Xiao S, Wang X, et al. High temperature creep behavior of an as-cast near- Ti–6Al–4Sn–4Zr-0.8 Mo–1Nb–1W-0.25 Si alloy. Mat Sci Eng A 2021;803:140487.
36. Mishra H, Ghosal P, Nandy TK, Sagar PK. Influence of Fe and Ni on creep of near -Ti alloy IMI834. Mat Sci Eng A 2005;399:222-31.
37. Zheng Z, Kong F, Chen Y, Wang X. Effect of nano- addition on the creep behavior of an as-cast near- titanium alloy. Mater Charact 2021;178:111249.
38. Li W, Chen Z, Liu J, Wang Q, Sui G. Effect of texture on anisotropy at 600 ℃ in a near- titanium alloy Ti60 plate. Mat Sci Eng A 2017;688:322-9.
39. Briguente LANS, Couto AA, Guimarães NM, Reis DAP, de Moura Neto C, Barboza MJR. Determination of creep parameters of Ti-6Al-4V with bimodal and equiaxed microstructure. In: Defect Diffus Forum. 2012;326-8:520–4.
40. Singh G, Satyanarayana DVV, Pederson R, Datta R, Ramamurty U. Enhancement in creep resistance of Ti–6Al–4V alloy due to boron addition. Mat Sci Eng A 2014;597:194-203.
41. Oliveira VMCA, Vazquez AM, Aguiar C, Robin A, Barboza MJR. Nitride coatings improve Ti-6Al-4V alloy behavior in creep tests. Mat Sci Eng A 2016;670:357-68.
42. Zhang Z, Fan J, Li R, et al. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet. J Mater Sci Technol 2021;75:265-75.
43. Omprakash CM, Satyanarayana DVV, Kumar V. Effect of primary content on creep and creep crack growth behaviour of near -Ti alloy. Mater Sci Technol 2011;27:1427-32.
44. Erickson N, Mueller J, Shirkov A, et al. AutoGluon-tabular: robust and accurate automl for structured data. arXiv. [Preprint.] Mar 13, 2020 [accessed 2024 Nov 15]. Available from: https://doi.org/10.48550/arXiv.2003.06505.
45. Weiss I, Semiatin SL. Thermomechanical processing of beta titanium alloys - an overview. Mat Sci Eng A 1998;243:46-65.
46. Makke N, Chawla S. Interpretable scientific discovery with symbolic regression: a review. Artif Intell Rev 2024;57:2.
47. Yang F, Li Z, Wang Q, et al. Cluster-formula-embedded machine learning for design of multicomponent -Ti alloys with low Young's modulus. npj Comput Mater 2020;6:101.
49. McCartney M, Haeringer M, Polifke W. Comparison of machine learning algorithms in the interpolation and extrapolation of flame describing functions. J Eng Gas Turbines Power 2020;142:061009.
50. Muckley ES, Saal JE, Meredig B, Roper CS, Martin JH. Interpretable models for extrapolation in scientific machine learning. Digit Discov 2023;2:1425-35.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.