REFERENCES

1. Zhang Z, Fan J, Tang B, et al. Microstructural evolution and FCC twinning behavior during hot deformation of high temperature titanium alloy Ti65. J Mater Sci Technol 2020;49:56-69.

2. Liu H, Wang H, Ren L, Qiu D, Yang K. Antibacterial copper-bearing titanium alloy prepared by laser powder bed fusion for superior mechanical performance. J Mater Sci Technol 2023;132:100-9.

3. Gao P, Fu M, Zhan M, Lei Z, Li Y. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: a review. J Mater Sci Technol 2020;39:56-73.

4. Boyer RR. An overview on the use of titanium in the aerospace industry. Mat Sci Eng A 1996;213:103-14.

5. Wu X, Makineni SK, Liebscher CH, et al. Unveiling the Re effect in Ni-based single crystal superalloys. Nat Commun 2020;11:389.

6. Cui C, Hu BM, Zhao L, Liu S. Titanium alloy production technology, market prospects and industry development. Mater Design 2011;32:1684-91.

7. Sattar M, Othman AR, Kamaruddin S, Akhtar M, Khan R. Limitations on the computational analysis of creep failure models: a review. Eng Fail Anal 2022;134:105968.

8. Jelwan J, Chowdhury M, Pearce G. Design for creep: a critical examination of some methods. Eng Fail Anal 2013;27:350-72.

9. Barboza MJR, Neto CM, Silva CRM. Creep mechanisms and physical modeling for Ti–6Al–4V. Mat Sci Eng A 2004;369:201-9.

10. Bolton J. The potential for major extrapolation of creep rupture and creep strain data. Mate High Temp 2014;31:109-20.

11. Bolton J. Reliable analysis and extrapolation of creep rupture data. Int J Pres Ves Pip 2017;157:1-19.

12. MacLachlan DW, Knowles DM. Modelling and prediction of the stress rupture behaviour of single crystal superalloys. Mat Sci Eng A 2001;302:275-85.

13. Prasad SC, Rajagopal KR, Rao IJ. A continuum model for the anisotropic creep of single crystal nickel-based superalloys. Acta Mater 2006;54:1487-500.

14. Oruganti R, Karadge M, Swaminathan S. Damage mechanics-based creep model for 9–10% Cr ferritic steels. Acta Mater 2011;59:2145-55.

15. Zhang K, Tan JP, Sun W, Nikbin K, Tu ST. Determination of multiaxial stress rupture criteria for creeping materials: a critical analysis of different approaches. J Mater Sci Technol 2023;137:14-25.

16. Larson FR, Miller J. A time-temperature relationship for rupture and creep stresses. Trans ASME 1952;74:765-71.

17. Dyson BF. Microstructure based creep constitutive model for precipitation strengthened alloys: theory and application. Mater Sci Technol 2009;25:213-20.

18. Zhou H, Li J, Liu J, et al. Significant reduction in creep life of P91 steam pipe elbow caused by an aberrant microstructure after short-term service. Sci Rep 2024;14:5216.

19. Dang YY, Zhao XB, Yuan Y, et al. Predicting long-term creep-rupture property of Inconel 740 and 740H. Mater High Temp 2016;33:1-5.

20. Kim WG, Yin SN, Lee GG, Kim YW, Kim SJ. Creep oxidation behaviour and creep strength prediction for Alloy 617. Int J Press Ves Pip 2010;87:289-95.

21. Vladimirov IN, Reese S, Eggeler G. Constitutive modelling of the anisotropic creep behaviour of nickel-base single crystal superalloys. Int J Mech Sci 2009;51:305-13.

22. Hart GLW, Mueller T, Toher C, Curtarolo S. Machine learning for alloys. Nat Rev Mater 2021;6:730-55.

23. Shin D, Yamamoto Y, Brady MP, Lee S, Haynes JA. Modern data analytics approach to predict creep of high-temperature alloys. Acta Mater 2019;168:321-30.

24. Zhou CL, Yuan RH, Liao WJ, et al. Creep rupture life predictions for Ni-based single crystal superalloys with automated machine learning. Rare Met 2024;43:2884-90.

25. Mamun O, Wenzlick M, Sathanur A, Hawk J, Devanathan R. Machine learning augmented predictive and generative model for rupture life in ferritic and austenitic steels. Npj Mat Degrad 2021;5:20.

26. Chen C, Wang Q, Dong C, Zhang Y, Dong H. Composition rules of Ni-base single crystal superalloys and its influence on creep properties via a cluster formula approach. Sci Rep 2020;10:21621.

27. Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C. Machine learning in materials informatics: recent applications and prospects. npj Comput Mater 2017;3:54.

28. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature 2018;559:547-55.

29. Biswas S, Fernandez Castellanos D, Zaiser M. Prediction of creep failure time using machine learning. Sci Rep 2020;10:16910.

30. Venkatesh V, Rack HJ. A neural network approach to elevated temperature creep–fatigue life prediction. Int J Fatigue 1999;21:225-34.

31. Liu Y, Wu J, Wang Z, et al. Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning. Acta Mater 2020;195:454-67.

32. Zhou C, Yuan R, Su B, et al. Creep rupture life prediction of high-temperature titanium alloy using cross-material transfer learning. J Mater Sci Technol 2024;178:39-47.

33. Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli LM. SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys Rev Mater 2018;2:083802.

34. Evans RW, Hull RJ, Wilshire B. The effects of alpha-case formation on the creep fracture properties of the high-temperature titanium alloy IMI834. J Mater Proc Technol 1996;56:492-501.

35. Zheng Z, Xiao S, Wang X, et al. High temperature creep behavior of an as-cast near-$$\alpha$$ Ti–6Al–4Sn–4Zr-0.8 Mo–1Nb–1W-0.25 Si alloy. Mat Sci Eng A 2021;803:140487.

36. Mishra H, Ghosal P, Nandy TK, Sagar PK. Influence of Fe and Ni on creep of near $$\alpha$$-Ti alloy IMI834. Mat Sci Eng A 2005;399:222-31.

37. Zheng Z, Kong F, Chen Y, Wang X. Effect of nano-$$Y_2O_3$$ addition on the creep behavior of an as-cast near-$$\alpha$$ titanium alloy. Mater Charact 2021;178:111249.

38. Li W, Chen Z, Liu J, Wang Q, Sui G. Effect of texture on anisotropy at 600 ℃ in a near-$$\alpha$$ titanium alloy Ti60 plate. Mat Sci Eng A 2017;688:322-9.

39. Briguente LANS, Couto AA, Guimarães NM, Reis DAP, de Moura Neto C, Barboza MJR. Determination of creep parameters of Ti-6Al-4V with bimodal and equiaxed microstructure. In: Defect Diffus Forum. 2012;326-8:520–4.

40. Singh G, Satyanarayana DVV, Pederson R, Datta R, Ramamurty U. Enhancement in creep resistance of Ti–6Al–4V alloy due to boron addition. Mat Sci Eng A 2014;597:194-203.

41. Oliveira VMCA, Vazquez AM, Aguiar C, Robin A, Barboza MJR. Nitride coatings improve Ti-6Al-4V alloy behavior in creep tests. Mat Sci Eng A 2016;670:357-68.

42. Zhang Z, Fan J, Li R, et al. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet. J Mater Sci Technol 2021;75:265-75.

43. Omprakash CM, Satyanarayana DVV, Kumar V. Effect of primary $$\alpha$$ content on creep and creep crack growth behaviour of near $$\alpha$$-Ti alloy. Mater Sci Technol 2011;27:1427-32.

44. Erickson N, Mueller J, Shirkov A, et al. AutoGluon-tabular: robust and accurate automl for structured data. arXiv. [Preprint.] Mar 13, 2020 [accessed 2024 Nov 15]. Available from: https://doi.org/10.48550/arXiv.2003.06505.

45. Weiss I, Semiatin SL. Thermomechanical processing of beta titanium alloys - an overview. Mat Sci Eng A 1998;243:46-65.

46. Makke N, Chawla S. Interpretable scientific discovery with symbolic regression: a review. Artif Intell Rev 2024;57:2.

47. Yang F, Li Z, Wang Q, et al. Cluster-formula-embedded machine learning for design of multicomponent $$\beta$$-Ti alloys with low Young's modulus. npj Comput Mater 2020;6:101.

48. Monkman FC. An empirical relationship between rupture life and minimum creep rate in creep-rupture tests. 1956. pp. 593–620. Available from: https://api.semanticscholar.org/CorpusID:222409633. [Last accessed on 15 Nov 2024.

49. McCartney M, Haeringer M, Polifke W. Comparison of machine learning algorithms in the interpolation and extrapolation of flame describing functions. J Eng Gas Turbines Power 2020;142:061009.

50. Muckley ES, Saal JE, Meredig B, Roper CS, Martin JH. Interpretable models for extrapolation in scientific machine learning. Digit Discov 2023;2:1425-35.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/