1. Mozharova NV, Kulachkova SA, Lebed’-Sharlevich YI. Emission and sink of greenhouse gases in soils of Moscow. Eurasian Soil Sc. 2018;51:359-70.
2. Shah MSA, Oh C, Park H, Hwang YJ, Ma M, Park JH. Catalytic oxidation of methane to oxygenated products: recent advancements and prospects for electrocatalytic and photocatalytic conversion at low temperatures. Adv Sci. 2020;7:2001946.
3. Abernethy S, O’Connor FM, Jones CD, Jackson RB. Methane removal and the proportional reductions in surface temperature and ozone. Philos Trans A Math Phys Eng Sci. 2021;379:20210104.
4. Hu D, Ordomsky VV, Khodakov AY. Major routes in the photocatalytic methane conversion into chemicals and fuels under mild conditions. Appl Catal B Environ. 2021;286:119913.
5. Song H, Meng X, Wang Z, Liu H, Ye J. Solar-energy-mediated methane conversion. Joule. 2019;3:1606-36.
6. Priyadarshini M, Das I, Ghangrekar MM, Blaney L. Advanced oxidation processes: performance, advantages, and scale-up of emerging technologies. J Environ Manage. 2022;316:115295.
7. Li Z, Pan X, Yi Z. Photocatalytic oxidation of methane over CuO-decorated ZnO nanocatalysts. J Mater Chem A. 2019;7:469-75.
8. Chen X, Li Y, Pan X, Cortie D, Huang X, Yi Z. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat Commun. 2016;7:12273.
9. He J, Naik V, Horowitz LW. Hydroxyl radical (OH) response to meteorological forcing and implication for the methane budget. Geophys Res Lett. 2021;48:e2021GL094140.
10. Wang Y, Ming T, Li W, et al. Atmospheric removal of methane by enhancing the natural hydroxyl radical sink. Greenh Gases. 2022;12:784-95.
11. Wang Y, Zhang H, Zhang J, et al. Low-concentration methane removal: what can we learn from high-concentration methane conversion? Catal Sci Technol. 2023;13:6392-408.
12. Majdinasab A, Yuan Q. Performance of the biotic systems for reducing methane emissions from landfill sites: a review. Ecol Eng. 2017;104:116-30.
13. Smith P, Goulding KW, Smith KA, et al. Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential. Nutr Cycl Agroecosys. 2001;60:237-52.
14. Jackson RB, Abernethy S, Canadell JG, et al. Atmospheric methane removal: a research agenda. Philos Trans A Math Phys Eng Sci. 2021;379:20200454.
15. Oeste FD, de Richter R, Ming T, Caillol S. Climate engineering by mimicking natural dust climate control: the iron salt aerosol method. Earth Syst Dynam. 2017;8:1-54.
16. Issaka E, Amu-Darko JN, Yakubu S, Fapohunda FO, Ali N, Bilal M. Advanced catalytic ozonation for degradation of pharmaceutical pollutants - a review. Chemosphere. 2022;289:133208.
17. Sun X, Li C, Yu B, Wang J, Wang W. Removal of gaseous volatile organic compounds via vacuum ultraviolet photodegradation: review and prospect. J Environ Sci. 2023;125:427-42.
18. Brodu N, Zaitan H, Manero MH, Pic JS. Removal of volatile organic compounds by heterogeneous ozonation on microporous synthetic alumina silicate. Water Sci Technol. 2012;66:2020-6.
19. Costa Filho BM, Vilar VJ. Strategies for the intensification of photocatalytic oxidation processes towards air streams decontamination: a review. Chem Eng J. 2020;391:123531.
20. Alejandro S, Valdés H, Manéro MH, Zaror CA. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics. J Hazard Mater. 2014;274:212-20.
21. Reed C, Xi Y, Oyama S. Distinguishing between reaction intermediates and spectators: a kinetic study of acetone oxidation using ozone on a silica-supported manganese oxide catalyst. J Catal. 2005;235:378-92.
22. George C, Ammann M, D’Anna B, Donaldson DJ, Nizkorodov SA. Heterogeneous photochemistry in the atmosphere. Chem Rev. 2015;115:4218-58.
23. Zhang J, Wang Y, Wang Y, et al. Solar driven gas phase advanced oxidation processes for methane removal - challenges and perspectives. Chemistry. 2022;28:e202201984.
24. Chen W, He H, Liang J, et al. A comprehensive review on metal based active sites and their interaction with O3 during heterogeneous catalytic ozonation process: types, regulation and authentication. J Hazard Mater. 2023;443:130302.
25. Zaitan H, Manero MH, Valdés H. Application of high silica zeolite ZSM-5 in a hybrid treatment process based on sequential adsorption and ozonation for VOCs elimination. J Environ Sci. 2016;41:59-68.
26. Zhao W, Zhang S, Ding J, Deng Z, Guo L, Zhong Q. Enhanced catalytic ozonation for NOx removal with CuFe2O4 nanoparticles and mechanism analysis. J Mol Catal A Chem. 2016;424:153-61.
27. Xiao J, Rabeah J, Yang J, Xie Y, Cao H, Brückner A. Fast electron transfer and •OH formation: key features for high activity in visible-light-driven ozonation with C3N4 catalysts. ACS Catal. 2017;7:6198-206.
28. Peng J, Lu T, Ming H, et al. Enhanced photocatalytic ozonation of phenol by Ag/ZnO nanocomposites. Catalysts. 2019;9:1006.
29. Yang Y, Peng J, Tao H, et al. Synergistic effect of exposed facets and surface defects of ZnO nanomaterials for photocatalytic ozonation of organic pollutants. Environ Sci Nano. 2023;10:1897-906.
30. Li X, Ma J, He H. Recent advances in catalytic decomposition of ozone. J Environ Sci. 2020;94:14-31.
31. Corro G, Flores JA, Pacheco-Aguirre F, et al. Effect of the electronic state of Cu, Ag, and Au on diesel soot abatement: performance of Cu/ZnO, Ag/ZnO, and Au/ZnO catalysts. ACS Omega. 2019;4:5795-804.
32. Du H, Li X, Cao Z, et al. Photocatalytic O2 oxidation of CH4 to CH3OH on AuFe-ZnO bifunctional catalyst. Appl Catal B Environ. 2023;324:122291.
33. Jiang W, Low J, Mao K, et al. Pd-modified ZnO-Au enabling alkoxy intermediates formation and dehydrogenation for photocatalytic conversion of methane to ethylene. J Am Chem Soc. 2021;143:269-78.
34. Kavitha R, Kumar SG. A review on plasmonic Au-ZnO heterojunction photocatalysts: preparation, modifications and related charge carrier dynamics. Mat Sci Semicon Proc. 2019;93:59-91.
35. Luo L, Gong Z, Xu Y, et al. Binary Au-Cu reaction sites decorated ZnO for selective methane oxidation to C1 oxygenates with nearly 100% selectivity at room temperature. J Am Chem Soc. 2022;144:740-50.
36. Biglari H, Afsharnia M, Alipour V, Khosravi R, Sharafi K, Mahvi AH. A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry. Environ Sci Pollut Res Int. 2017;24:4105-16.
37. Yao C, Chen W, Li L, et al. ZnO:Au nanocomposites with high photocatalytic activity prepared by liquid-phase pulsed laser ablation. Opt Laser Technol. 2021;133:106533.
38. Yang H, Li G, Jiang G, Zhang Z, Hao Z. Heterogeneous selective oxidation over supported metal catalysts: from nanoparticles to single atoms. Appl Catal B Environ. 2023;325:122384.
39. Jin R, Li G, Sharma S, Li Y, Du X. Toward Active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem Rev. 2021;121:567-648.
40. Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev. 2018;118:4981-5079.
41. Wang J, Liu D, Yuan S, et al. Understanding the plasmonic effect of enhanced photodegradation with Au nanoparticle decorated ZnO nanosheet arrays under visible light irradiation. Molecules. 2023;28:6827.
42. Chen ZY, Shao WZ, Li WJ, Sun XY, Zhen L, Li Y. Suppressing the agglomeration of ZnO nanoparticles in air by doping with lower electronegativity metallic ions: implications for Ag/ZnO electrical contact composites. ACS Appl Nano Mater. 2022;5:10809-17.
43. Stefan M, Popa A, Toloman D, Leostean C, Barbu-Tudoran L, Falamas A. Enhanced plasmonic photocatalysis of Au-decorated ZnO nanocomposites. Inorganics. 2023;11:157.
44. Ma X, Li D, Jiang Y, et al. Fiber-like ZnO with highly dispersed Pt nanoparticles for enhanced photocatalytic CO2 reduction. J Colloid Interface Sci. 2022;628:768-76.
45. Ren L, Li Y, Liu H, Zhao C, Zhao X, Xie H. Intensitive UV-Vis-IR driven catalytic activity of Pt supported on hierarchical ZnO porous nanosheets for benzene degradation via novel photothermocatalytic synergetic effect. J Environ Chem Eng. 2022;10:107694.
46. Phuruangrat A, Nunpradit A, Sakhon T, et al. Microwave-assisted synthesis of heterostructure Pd/ZnO flowers used for photocatalytic reaction of dyes illuminated by UV radiation. J Aust Ceram Soc. 2021;57:1521-30.
47. Zhou Q, Tan X, Wang X, et al. Selective photocatalytic oxidation of methane to methanol by constructing a rapid O2 conversion pathway over Au–Pd/ZnO. ACS Catal. 2024;14:955-64.
48. Chen J, Zhu W, Zhao W, et al. Revelation of contributing mechanism of reactive oxygen species in photocatalytic ozonation heterocyclization of gaseous hexane isomers. Chemosphere. 2023;316:137759.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.