REFERENCES

1. Mozharova NV, Kulachkova SA, Lebed’-Sharlevich YI. Emission and sink of greenhouse gases in soils of Moscow. Eurasian Soil Sc. 2018;51:359-70.

2. Shah MSA, Oh C, Park H, Hwang YJ, Ma M, Park JH. Catalytic oxidation of methane to oxygenated products: recent advancements and prospects for electrocatalytic and photocatalytic conversion at low temperatures. Adv Sci. 2020;7:2001946.

3. Abernethy S, O’Connor FM, Jones CD, Jackson RB. Methane removal and the proportional reductions in surface temperature and ozone. Philos Trans A Math Phys Eng Sci. 2021;379:20210104.

4. Hu D, Ordomsky VV, Khodakov AY. Major routes in the photocatalytic methane conversion into chemicals and fuels under mild conditions. Appl Catal B Environ. 2021;286:119913.

5. Song H, Meng X, Wang Z, Liu H, Ye J. Solar-energy-mediated methane conversion. Joule. 2019;3:1606-36.

6. Priyadarshini M, Das I, Ghangrekar MM, Blaney L. Advanced oxidation processes: performance, advantages, and scale-up of emerging technologies. J Environ Manage. 2022;316:115295.

7. Li Z, Pan X, Yi Z. Photocatalytic oxidation of methane over CuO-decorated ZnO nanocatalysts. J Mater Chem A. 2019;7:469-75.

8. Chen X, Li Y, Pan X, Cortie D, Huang X, Yi Z. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat Commun. 2016;7:12273.

9. He J, Naik V, Horowitz LW. Hydroxyl radical (OH) response to meteorological forcing and implication for the methane budget. Geophys Res Lett. 2021;48:e2021GL094140.

10. Wang Y, Ming T, Li W, et al. Atmospheric removal of methane by enhancing the natural hydroxyl radical sink. Greenh Gases. 2022;12:784-95.

11. Wang Y, Zhang H, Zhang J, et al. Low-concentration methane removal: what can we learn from high-concentration methane conversion? Catal Sci Technol. 2023;13:6392-408.

12. Majdinasab A, Yuan Q. Performance of the biotic systems for reducing methane emissions from landfill sites: a review. Ecol Eng. 2017;104:116-30.

13. Smith P, Goulding KW, Smith KA, et al. Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential. Nutr Cycl Agroecosys. 2001;60:237-52.

14. Jackson RB, Abernethy S, Canadell JG, et al. Atmospheric methane removal: a research agenda. Philos Trans A Math Phys Eng Sci. 2021;379:20200454.

15. Oeste FD, de Richter R, Ming T, Caillol S. Climate engineering by mimicking natural dust climate control: the iron salt aerosol method. Earth Syst Dynam. 2017;8:1-54.

16. Issaka E, Amu-Darko JN, Yakubu S, Fapohunda FO, Ali N, Bilal M. Advanced catalytic ozonation for degradation of pharmaceutical pollutants - a review. Chemosphere. 2022;289:133208.

17. Sun X, Li C, Yu B, Wang J, Wang W. Removal of gaseous volatile organic compounds via vacuum ultraviolet photodegradation: review and prospect. J Environ Sci. 2023;125:427-42.

18. Brodu N, Zaitan H, Manero MH, Pic JS. Removal of volatile organic compounds by heterogeneous ozonation on microporous synthetic alumina silicate. Water Sci Technol. 2012;66:2020-6.

19. Costa Filho BM, Vilar VJ. Strategies for the intensification of photocatalytic oxidation processes towards air streams decontamination: a review. Chem Eng J. 2020;391:123531.

20. Alejandro S, Valdés H, Manéro MH, Zaror CA. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics. J Hazard Mater. 2014;274:212-20.

21. Reed C, Xi Y, Oyama S. Distinguishing between reaction intermediates and spectators: a kinetic study of acetone oxidation using ozone on a silica-supported manganese oxide catalyst. J Catal. 2005;235:378-92.

22. George C, Ammann M, D’Anna B, Donaldson DJ, Nizkorodov SA. Heterogeneous photochemistry in the atmosphere. Chem Rev. 2015;115:4218-58.

23. Zhang J, Wang Y, Wang Y, et al. Solar driven gas phase advanced oxidation processes for methane removal - challenges and perspectives. Chemistry. 2022;28:e202201984.

24. Chen W, He H, Liang J, et al. A comprehensive review on metal based active sites and their interaction with O3 during heterogeneous catalytic ozonation process: types, regulation and authentication. J Hazard Mater. 2023;443:130302.

25. Zaitan H, Manero MH, Valdés H. Application of high silica zeolite ZSM-5 in a hybrid treatment process based on sequential adsorption and ozonation for VOCs elimination. J Environ Sci. 2016;41:59-68.

26. Zhao W, Zhang S, Ding J, Deng Z, Guo L, Zhong Q. Enhanced catalytic ozonation for NOx removal with CuFe2O4 nanoparticles and mechanism analysis. J Mol Catal A Chem. 2016;424:153-61.

27. Xiao J, Rabeah J, Yang J, Xie Y, Cao H, Brückner A. Fast electron transfer and OH formation: key features for high activity in visible-light-driven ozonation with C3N4 catalysts. ACS Catal. 2017;7:6198-206.

28. Peng J, Lu T, Ming H, et al. Enhanced photocatalytic ozonation of phenol by Ag/ZnO nanocomposites. Catalysts. 2019;9:1006.

29. Yang Y, Peng J, Tao H, et al. Synergistic effect of exposed facets and surface defects of ZnO nanomaterials for photocatalytic ozonation of organic pollutants. Environ Sci Nano. 2023;10:1897-906.

30. Li X, Ma J, He H. Recent advances in catalytic decomposition of ozone. J Environ Sci. 2020;94:14-31.

31. Corro G, Flores JA, Pacheco-Aguirre F, et al. Effect of the electronic state of Cu, Ag, and Au on diesel soot abatement: performance of Cu/ZnO, Ag/ZnO, and Au/ZnO catalysts. ACS Omega. 2019;4:5795-804.

32. Du H, Li X, Cao Z, et al. Photocatalytic O2 oxidation of CH4 to CH3OH on AuFe-ZnO bifunctional catalyst. Appl Catal B Environ. 2023;324:122291.

33. Jiang W, Low J, Mao K, et al. Pd-modified ZnO-Au enabling alkoxy intermediates formation and dehydrogenation for photocatalytic conversion of methane to ethylene. J Am Chem Soc. 2021;143:269-78.

34. Kavitha R, Kumar SG. A review on plasmonic Au-ZnO heterojunction photocatalysts: preparation, modifications and related charge carrier dynamics. Mat Sci Semicon Proc. 2019;93:59-91.

35. Luo L, Gong Z, Xu Y, et al. Binary Au-Cu reaction sites decorated ZnO for selective methane oxidation to C1 oxygenates with nearly 100% selectivity at room temperature. J Am Chem Soc. 2022;144:740-50.

36. Biglari H, Afsharnia M, Alipour V, Khosravi R, Sharafi K, Mahvi AH. A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry. Environ Sci Pollut Res Int. 2017;24:4105-16.

37. Yao C, Chen W, Li L, et al. ZnO:Au nanocomposites with high photocatalytic activity prepared by liquid-phase pulsed laser ablation. Opt Laser Technol. 2021;133:106533.

38. Yang H, Li G, Jiang G, Zhang Z, Hao Z. Heterogeneous selective oxidation over supported metal catalysts: from nanoparticles to single atoms. Appl Catal B Environ. 2023;325:122384.

39. Jin R, Li G, Sharma S, Li Y, Du X. Toward Active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem Rev. 2021;121:567-648.

40. Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev. 2018;118:4981-5079.

41. Wang J, Liu D, Yuan S, et al. Understanding the plasmonic effect of enhanced photodegradation with Au nanoparticle decorated ZnO nanosheet arrays under visible light irradiation. Molecules. 2023;28:6827.

42. Chen ZY, Shao WZ, Li WJ, Sun XY, Zhen L, Li Y. Suppressing the agglomeration of ZnO nanoparticles in air by doping with lower electronegativity metallic ions: implications for Ag/ZnO electrical contact composites. ACS Appl Nano Mater. 2022;5:10809-17.

43. Stefan M, Popa A, Toloman D, Leostean C, Barbu-Tudoran L, Falamas A. Enhanced plasmonic photocatalysis of Au-decorated ZnO nanocomposites. Inorganics. 2023;11:157.

44. Ma X, Li D, Jiang Y, et al. Fiber-like ZnO with highly dispersed Pt nanoparticles for enhanced photocatalytic CO2 reduction. J Colloid Interface Sci. 2022;628:768-76.

45. Ren L, Li Y, Liu H, Zhao C, Zhao X, Xie H. Intensitive UV-Vis-IR driven catalytic activity of Pt supported on hierarchical ZnO porous nanosheets for benzene degradation via novel photothermocatalytic synergetic effect. J Environ Chem Eng. 2022;10:107694.

46. Phuruangrat A, Nunpradit A, Sakhon T, et al. Microwave-assisted synthesis of heterostructure Pd/ZnO flowers used for photocatalytic reaction of dyes illuminated by UV radiation. J Aust Ceram Soc. 2021;57:1521-30.

47. Zhou Q, Tan X, Wang X, et al. Selective photocatalytic oxidation of methane to methanol by constructing a rapid O2 conversion pathway over Au–Pd/ZnO. ACS Catal. 2024;14:955-64.

48. Chen J, Zhu W, Zhao W, et al. Revelation of contributing mechanism of reactive oxygen species in photocatalytic ozonation heterocyclization of gaseous hexane isomers. Chemosphere. 2023;316:137759.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/