REFERENCES

1. Mavros MN, Economopoulos KP, Alexiou VG, Pawlik TM. Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: systematic review and meta-analysis. JAMA Surg 2014;149:565-74.

2. Ruff SM, Pawlik TM. Clinical management of intrahepatic cholangiocarcinoma: surgical approaches and systemic therapies. Front Oncol 2024;14:1321683.

3. NCCN guidelines version: biliary tract cancers. National comprehensive cancer network. Available from: https://www.nccn.org/professionals/physician_gls/pdf/btc.pdf [Last accessed on 8 Jul 2024].

4. Primrose JN, Fox RP, Palmer DH, et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol 2019;20:663-73.

5. Kawashima J, Sahara K, Shen F, et al. Predicting risk of recurrence after resection of stage I intrahepatic cholangiocarcinoma. J Gastrointest Surg 2024;28:18-25.

6. Oh DY, Ruth He A, Qin S, et al. Durvalumab plus gemcitabine and cisplatin in advanced biliary tract cancer. NEJM Evid 2022;1:EVIDoa2200015.

7. Amin MB, American Joint Committee on Cancer, American Cancer Society. AJCC cancer staging manual. 8th ed. Berlin: Springer; 2017.

8. Zhang XF, Xue F, He J, et al. Proposed modification of the eighth edition of the AJCC staging system for intrahepatic cholangiocarcinoma. HPB 2021;23:1456-66.

9. Maithel SK, Gamblin TC, Kamel I, Corona-Villalobos CP, Thomas M, Pawlik TM. Multidisciplinary approaches to intrahepatic cholangiocarcinoma. Cancer 2013;119:3929-42.

10. Thinkhamrop K, Khuntikeo N, Chamadol N, Suwannatrai AT, Phimha S, Kelly M. Associations between ultrasound screening findings and cholangiocarcinoma diagnosis in an at-risk population. Sci Rep 2022;12:13513.

11. Li Q, Chen C, Su J, et al. Recurrence and prognosis in intrahepatic cholangiocarcinoma patients with different etiology after radical resection: a multi-institutional study. BMC Cancer 2022;22:329.

12. Zhang XF, Chakedis J, Bagante F, et al. Implications of intrahepatic cholangiocarcinoma etiology on recurrence and prognosis after curative-intent resection: a multi-institutional study. World J Surg 2018;42:849-57.

13. Zhu Y, Zhu Y, Cai F, Zhao J, Liu F. Prognostic risk factors associated with recurrence and metastasis after radical resection in patients with hepatolithiasis complicated by intrahepatic cholangiocarcinoma. Cell Biochem Biophys 2015;73:455-60.

14. Xu XB, Hu C, Yang HJ, Zheng SS. Isolated anti-HBc is an independent risk factor for tumor recurrence in intrahepatic cholangiocarcinoma after curative resection. Hepatob Pancreat Dis Int 2022;21:472-8.

15. Wu ZF, Wu XY, Zhu N, et al. Prognosis after resection for hepatitis B virus-associated intrahepatic cholangiocarcinoma. World J Gastroenterol 2015;21:935-43.

16. Li Z, Gao Q, Wu Y, et al. HBV infection effects prognosis and activates the immune response in intrahepatic cholangiocarcinoma. Hepatol Commun 2024;8:e0360.

17. Taniai T, Haruki K, Yanagaki M, et al. Osteosarcopenia predicts poor prognosis for patients with intrahepatic cholangiocarcinoma after hepatic resection. Surg Today 2023;53:82-9.

18. Yugawa K, Itoh S, Kurihara T, et al. Skeletal muscle mass predicts the prognosis of patients with intrahepatic cholangiocarcinoma. Am J Surg 2019;218:952-8.

19. Akgül Ö, Bagante F, Olsen G, et al. Preoperative prognostic nutritional index predicts survival of patients with intrahepatic cholangiocarcinoma after curative resection. J Surg Oncol 2018;118:422-30.

20. Kim JH, Cheon YK, Lee TY, Lee SH, Chung H. Effect of age on the prognosis of intrahepatic cholangiocarcinoma. Korean J Intern Med 2023;38:39-47.

21. Lurje I, Uluk D, Pavicevic S, et al. Body composition is associated with disease aetiology and prognosis in patients undergoing resection of intrahepatic cholangiocarcinoma. Cancer Med 2023;12:17569-80.

22. Merath K, Mehta R, Hyer JM, et al. Impact of body mass index on tumor recurrence among patients undergoing curative-intent resection of intrahepatic cholangiocarcinoma- a multi-institutional international analysis. Eur J Surg Oncol 2019;45:1084-91.

23. Yu Q, Lei Z, Ma W, et al. Postoperative prognosis of non-alcoholic fatty liver disease-associated intrahepatic cholangiocarcinoma: a multi-center propensity score matching analysis. J Gastrointest Surg 2023;27:2403-13.

24. Fu K, Yang X, Wu H, Gong J, Li X. Diabetes and PKM2 affect prognosis in patients with intrahepatic cholangiocarcinoma. Oncol Lett 2020;20:265.

25. De Lorenzo S, Tovoli F, Mazzotta A, et al. Non-alcoholic steatohepatitis as a risk factor for intrahepatic cholangiocarcinoma and its prognostic role. Cancers 2020;12:3182.

26. Fei Y, Pan X, Wei F. The impact of cirrhosis on the prognosis of intrahepatic cholangiocarcinoma after surgery. Asian J Surg 2023;46:1361-3.

27. Zhang JX, Li P, Chen Z, et al. Impact of liver fibrosis score on prognosis after common therapies for intrahepatic cholangiocarcinoma: a propensity score matching analysis. BMC Cancer 2020;20:556.

28. Amory B, Goumard C, Laurent A, et al. Combined hepatocellular-cholangiocarcinoma compared to hepatocellular carcinoma and intrahepatic cholangiocarcinoma: different survival, similar recurrence: report of a large study on repurposed databases with propensity score matching. Surgery 2024;175:413-23.

29. Song P, Midorikawa Y, Nakayama H, et al. Patients’ prognosis of intrahepatic cholangiocarcinoma and combined hepatocellular-cholangiocarcinoma after resection. Cancer Med 2019;8:5862-71.

30. Jung DH, Hwang S, Kim KH, et al. Clinicopathological features and post-resection prognosis of double primary hepatocellular carcinoma and intrahepatic cholangiocarcinoma. World J Surg 2017;41:825-34.

31. Kaneko S, Kurosaki M, Tsuchiya K, et al. Prognosis of intrahepatic cholangiocarcinoma stratified by albumin-bilirubin grade. Hepatol Res 2021;51:902-8.

32. Zhang B, Liu S, Zhou B, et al. High serum gamma-glutamyl transpeptidase concentration associates with poor postoperative prognosis of patients with hepatitis B virus-associated intrahepatic cholangiocarcinoma. Ann Transl Med 2021;9:17.

33. Lu Z, Liu S, Yi Y, et al. Serum gamma-glutamyl transferase levels affect the prognosis of patients with intrahepatic cholangiocarcinoma who receive postoperative adjuvant transcatheter arterial chemoembolization: a propensity score matching study. Int J Surg 2017;37:24-8.

34. Association for the Study of the Liver. Electronic address: [email protected], European association for the study of the liver. EASL-ILCA clinical practice guidelines on the management of intrahepatic cholangiocarcinoma. J Hepatol 2023;79:181-208.

35. Geh D, Watson R, Sen G, et al. COVID-19 and liver cancer: lost patients and larger tumours. BMJ Open Gastroenterol 2022;9:e000794.

36. Turner KM, Delman AM, Kharofa J, et al. A national assessment of T2 staging for intrahepatic cholangiocarcinoma and the poor prognosis associated with multifocality. Ann Surg Oncol 2022;29:5094-102.

37. Sohn HJ, Kim H, Kim JR, et al. Predicting prognosis and evaluating the benefits of adjuvant chemotherapy depending on the tumor location in intrahepatic cholangiocarcinoma: focusing on the involvement of below 2nd bile duct confluence. Ann Surg Treat Res 2022;102:248-56.

38. Zhang XF, Bagante F, Chen Q, et al. Perioperative and long-term outcome of intrahepatic cholangiocarcinoma involving the hepatic hilus after curative-intent resection: comparison with peripheral intrahepatic cholangiocarcinoma and hilar cholangiocarcinoma. Surgery 2018;163:1114-20.

39. Spolverato G, Yakoob MY, Kim Y, et al. The impact of surgical margin status on long-term outcome after resection for intrahepatic cholangiocarcinoma. Ann Surg Oncol 2015;22:4020-8.

40. Li MX, Bi XY, Li ZY, et al. Impaction of surgical margin status on the survival outcome after surgical resection of intrahepatic cholangiocarcinoma: a systematic review and meta-analysis. J Surg Res 2016;203:163-73.

41. Jiang JH, Fang DZ, Hu YT. Influence of surgical margin width on survival rate after resection of intrahepatic cholangiocarcinoma: a systematic review and meta-analysis. BMJ Open 2023;13:e067222.

42. Wu L, Tsilimigras DI, Paredes AZ, et al. Trends in the incidence, treatment and outcomes of patients with intrahepatic cholangiocarcinoma in the USA: facility type is associated with margin status, use of lymphadenectomy and overall survival. World J Surg 2019;43:1777-87.

43. Bagante F, Spolverato G, Weiss M, et al. Impact of morphological status on long-term outcome among patients undergoing liver surgery for intrahepatic Cholangiocarcinoma. Ann Surg Oncol 2017;24:2491-501.

44. Tsilimigras DI, Ejaz A, Cloyd J, et al. Tumor necrosis impacts prognosis of patients undergoing resection for T1 intrahepatic cholangiocarcinoma. Ann Surg Oncol ;2022:4326-34.

45. Bartsch F, Heuft LK, Baumgart J, et al. Influence of lymphangio (L), vascular (V), and perineural (Pn) invasion on recurrence and survival of resected intrahepatic cholangiocarcinoma. J Clin Med 2021;10:2426.

46. Shao C, Chen J, Shi J, Huang L, Qiu Y. Histological classification of microvascular invasion to predict prognosis in intrahepatic cholangiocarcinoma. Int J Clin Exp Pathol 2017;10:7674-81.

47. Kosaka H, Ishida M, Ueno M, et al. Impact of trinal histological glandular differentiation grade on the prognosis of patients with intrahepatic cholangiocarcinoma: a multicenter retrospective study. J Gastrointest Surg 2023;27:2780-6.

48. Bednarsch J, Tan X, Czigany Z, et al. The presence of small nerve fibers in the tumor microenvironment as predictive biomarker of oncological outcome following partial hepatectomy for intrahepatic cholangiocarcinoma. Cancers 2021;13:3661.

49. Wang T, Kong J, Yang X, Shen S, Zhang M, Wang W. Clinical features of sarcomatoid change in patients with intrahepatic cholangiocarcinoma and prognosis after surgical liver resection: a propensity score matching analysis. J Surg Oncol 2020;121:524-37.

50. Sha M, Jeong S, Wang X, et al. Tumor-associated lymphangiogenesis predicts unfavorable prognosis of intrahepatic cholangiocarcinoma. BMC Cancer 2019;19:208.

51. Türkoğlu MA, Yamamoto Y, Sugiura T, et al. The favorable prognosis after operative resection of hypervascular intrahepatic cholangiocarcinoma: a clinicopathologic and immunohistochemical study. Surgery 2016;160:683-90.

52. Xin HY, Zou JX, Sun RQ, et al. Characterization of tumor microbiome and associations with prognosis in intrahepatic cholangiocarcinoma. J Gastroenterol 2024;59:411-23.

53. Wang J, Shu M, Peng H, et al. The influence of the extent of lymph node metastasis on the prognosis for patients with intrahepatic cholangiocarcinoma. Ann Surg Treat Res 2023;104:258-68.

54. Bartsch F, Hahn F, Müller L, et al. Relevance of suspicious lymph nodes in preoperative imaging for resectability, recurrence and survival of intrahepatic cholangiocarcinoma. BMC Surg 2020;20:75.

55. Zhang XF, Xue F, Dong DH, et al. Number and station of lymph node metastasis after curative-intent resection of intrahepatic cholangiocarcinoma impact prognosis. Ann Surg 2021;274:e1187-95.

56. Li F, Jiang Y, Jiang L, et al. Effect of lymph node resection on prognosis of resectable intrahepatic cholangiocarcinoma: a systematic review and meta-analysis. Front Oncol 2022;12:957792.

57. Zhu J, Liu C, Li H, et al. Adequate lymph node dissection is essential for accurate nodal staging in intrahepatic cholangiocarcinoma: a population-based study. Cancer Med 2023;12:8184-98.

58. Zhang R, Zhang J, Chen C, et al. The optimal number of examined lymph nodes for accurate staging of intrahepatic cholangiocarcinoma: a multi-institutional analysis using the nodal staging score model. Eur J Surg Oncol 2023;49:1429-35.

59. Spolverato G, Bagante F, Weiss M, et al. Comparative performances of the 7th and the 8th editions of the American Joint Committee on Cancer staging systems for intrahepatic cholangiocarcinoma. J Surg Oncol 2017;115:696-703.

60. Lozada ME, Zhang N, Jin W, et al. CS-iCCA, a new clinically based staging system for intrahepatic cholangiocarcinoma: establishment and external validation. Am J Gastroenterol 2023;118:2173-83.

61. Shaikh CF, Alaimo L, Moazzam Z, et al. Predicting overall and recurrence-free survival in patients with intrahepatic cholangiocarcinoma using the MEGNA score: a multi-institutional analysis. J Surg Oncol 2023;127:73-80.

62. Wang C, Ciren P, Danzeng A, et al. Anatomical resection improved the outcome of intrahepatic cholangiocarcinoma: a propensity score matching analysis of a retrospective cohort. J Oncol 2022;2022:4446243.

63. Langella S, Russolillo N, Ossola P, et al. Recurrence after curative resection for intrahepatic cholangiocarcinoma: how to predict the chance of repeat hepatectomy? J Clin Med 2021;10:2820.

64. Zhang XF, Bagante F, Chakedis J, et al. Perioperative and long-term outcome for intrahepatic cholangiocarcinoma: impact of major versus minor hepatectomy. J Gastrointest Surg 2017;21:1841-50.

65. Ratti F, Maina C, Clocchiatti L, et al. Minimally invasive approach provides oncological benefit in patients with high risk of very early recurrence (VER) after surgery for intrahepatic cholangiocarcinoma (iCCA). Ann Surg Oncol 2024;31:2557-67.

66. Tsilimigras DI, Sahara K, Wu L, et al. Very early recurrence after liver resection for intrahepatic cholangiocarcinoma: considering alternative treatment approaches. JAMA Surg 2020;155:823-31.

67. Carpenter EL, Thomas KK, Adams AM, et al. Modern trends in minimally invasive versus open hepatectomy for colorectal liver metastasis: an analysis of ACS-NSQIP. Surg Endosc 2023;37:5591-602.

68. Vreeland TJ, Collings AT, Ozair A, et al. SAGES/AHPBA guidelines for the use of minimally invasive surgery for the surgical treatment of colorectal liver metastases (CRLM). Surg Endosc 2023;37:2508-16.

69. Martin SP, Drake J, Wach MM, et al. Laparoscopic approach to intrahepatic cholangiocarcinoma is associated with an exacerbation of inadequate nodal staging. Ann Surg Oncol 2019;26:1851-7.

70. Yamada T, Nakanishi Y, Okamura K, et al. Impact of serum carbohydrate antigen 19-9 level on prognosis and prediction of lymph node metastasis in patients with intrahepatic cholangiocarcinoma. J Gastroenterol Hepatol ;2018:1626-33.

71. Bergquist JR, Ivanics T, Storlie CB, et al. Implications of CA19-9 elevation for survival, staging, and treatment sequencing in intrahepatic cholangiocarcinoma: a national cohort analysis. J Surg Oncol 2016;114:475-82.

72. He C, Zhang Y, Song Y, et al. Preoperative CEA levels are supplementary to CA19-9 levels in predicting prognosis in patients with resectable intrahepatic cholangiocarcinoma. J Cancer 2018;9:3117-28.

73. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008;454:436-44.

74. Choi WJ, Perez FM, Gravely A, et al. Preoperative neutrophil-to-lymphocyte ratio is prognostic for early recurrence after curative intrahepatic cholangiocarcinoma resection. Ann Hepatobiliary Pancreat Surg 2023;27:158-65.

75. Omichi K, Cloyd JM, Yamashita S, et al. Neutrophil-to-lymphocyte ratio predicts prognosis after neoadjuvant chemotherapy and resection of intrahepatic cholangiocarcinoma. Surgery 2017;162:752-65.

76. Chen Q, Yang LX, Li XD, et al. The elevated preoperative neutrophil-to-lymphocyte ratio predicts poor prognosis in intrahepatic cholangiocarcinoma patients undergoing hepatectomy. Tumour Biol 2015;36:5283-9.

77. Huh G, Ryu JK, Chun JW, et al. High platelet-to-lymphocyte ratio is associated with poor prognosis in patients with unresectable intrahepatic cholangiocarcinoma receiving gemcitabine plus cisplatin. BMC Cancer 2020;20:907.

78. Chen Q, Dai Z, Yin D, et al. Negative impact of preoperative platelet-lymphocyte ratio on outcome after hepatic resection for intrahepatic cholangiocarcinoma. Medicine 2015;94:e574.

79. Tsilimigras DI, Moris D, Mehta R, et al. The systemic immune-inflammation index predicts prognosis in intrahepatic cholangiocarcinoma: an international multi-institutional analysis. HPB 2020;22:1667-74.

80. Liu H, Qiu G, Hu F, Wu H. Fibrinogen/albumin ratio index is an independent predictor of recurrence-free survival in patients with intrahepatic cholangiocarcinoma following surgical resection. World J Surg Oncol 2021;19:218.

81. Zhu J, Wang D, Liu C, et al. Development and validation of a new prognostic immune-inflammatory-nutritional score for predicting outcomes after curative resection for intrahepatic cholangiocarcinoma: a multicenter study. Front Immunol 2023;14:1165510.

82. Yoh T, Hatano E, Kasai Y, et al. Serum nardilysin, a surrogate marker for epithelial-mesenchymal transition, predicts prognosis of intrahepatic cholangiocarcinoma after surgical resection. Clin Cancer Res 2019;25:619-28.

83. Jiang S, Tang W, Huang B. Longitudinal change of circulating tumour cell count and its relation to prognosis in advanced intrahepatic cholangiocarcinoma patients. Scand J Clin Lab Invest 2023;83:234-40.

84. Zhu AX, Borger DR, Kim Y, et al. Genomic profiling of intrahepatic cholangiocarcinoma: refining prognosis and identifying therapeutic targets. Ann Surg Oncol 2014;21:3827-34.

85. Andraus W, Tustumi F, de Meira Junior JD, et al. Molecular profile of intrahepatic cholangiocarcinoma. Int J Mol Sci 2023;25:461.

86. Weinberg BA, Xiu J, Lindberg MR, et al. Molecular profiling of biliary cancers reveals distinct molecular alterations and potential therapeutic targets. J Gastrointest Oncol 2019;10:652-62.

87. Tomczak A, Springfeld C, Dill MT, et al. Precision oncology for intrahepatic cholangiocarcinoma in clinical practice. Br J Cancer 2022;127:1701-8.

88. Robertson S, Hyder O, Dodson R, et al. The frequency of KRAS and BRAF mutations in intrahepatic cholangiocarcinomas and their correlation with clinical outcome. Hum Pathol 2013;44:2768-73.

89. Peng J, Fang S, Li M, et al. Genetic alterations of KRAS and TP53 in intrahepatic cholangiocarcinoma associated with poor prognosis. Open Life Sci 2023;18:20220652.

90. Guo C, Liu Z, Yu Y, et al. TP53/KRAS Co-mutations create divergent prognosis signatures in intrahepatic cholangiocarcinoma. Front Genet 2022;13:844800.

91. Xin HY, Sun RQ, Zou JX, et al. Association of BRAF variants with disease characteristics, prognosis, and targeted therapy response in intrahepatic cholangiocarcinoma. JAMA Netw Open 2023;6:e231476.

92. Subbiah V, Lassen U, Gasal E, Burgess P, Wainberg ZA. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutated biliary tract cancer - Authors’ reply. Lancet Oncol 2020;21:e516.

93. Boerner T, Drill E, Pak LM, et al. Genetic determinants of outcome in intrahepatic cholangiocarcinoma. Hepatology 2021;74:1429-44.

94. Toshida K, Itoh S, Yugawa K, et al. Prognostic significance for recurrence of fibroblast growth factor receptor 2 in intrahepatic cholangiocarcinoma patients undergoing curative hepatic resection. Hepatol Res 2023;53:432-9.

95. Abou-Alfa GK, Bibeau K, Schultz N, et al. Effect of FGFR2 alterations on overall and progression-free survival in patients receiving systemic therapy for intrahepatic cholangiocarcinoma. Target Oncol 2022;17:517-27.

96. Bekaii-Saab TS, Valle JW, Van Cutsem E, et al. FIGHT-302: first-line pemigatinib vs gemcitabine plus cisplatin for advanced cholangiocarcinoma with FGFR2 rearrangements. Future Oncol 2020;16:2385-99.

97. Chen L, He Y, Han Z, et al. The impact of decreased expression of SVEP1 on abnormal neovascularization and poor prognosis in patients with intrahepatic cholangiocarcinoma. Front Genet 2022;13:1127753.

98. Tang Z, Yang Y, Zhang Q, Liang T. Epigenetic dysregulation-mediated COL12A1 upregulation predicts worse outcome in intrahepatic cholangiocarcinoma patients. Clin Epigenetics 2023;15:13.

99. Wu L, Yang J, Ke RS, et al. Impact of lncRNA SOX9-AS1 overexpression on the prognosis and progression of intrahepatic cholangiocarcinoma. Clin Res Hepatol Gastroenterol 2022;46:101999.

100. Bi C, Liu M, Rong W, et al. High Beclin-1 and ARID1A expression corelates with poor survival and high recurrence in intrahepatic cholangiocarcinoma: a histopathological retrospective study. BMC Cancer 2019;19:213.

101. Yao X, Chen B, Wang M, et al. Exploration and validation of a novel ferroptosis-related gene signature predicting the prognosis of intrahepatic cholangiocarcinoma. Acta Biochim Biophys Sin 2022;54:1376-85.

102. Sarcognato S, Sacchi D, Fabris L, et al. Ferroptosis in intrahepatic cholangiocarcinoma: IDH1(105GGT) single nucleotide polymorphism is associated with its activation and better prognosis. Front Med 2022;9:886229.

103. Ren H, Liu C, Zhang C, et al. A cuproptosis-related gene expression signature predicting clinical prognosis and immune responses in intrahepatic cholangiocarcinoma detected by single-cell RNA sequence analysis. Cancer Cell Int 2024;24:92.

104. Marabelle A, Le DT, Ascierto PA, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II keynote-158 study. J Clin Oncol 2020;38:1-10.

105. Song JP, Liu XZ, Chen Q, Liu YF. High tumor mutation burden indicates a poor prognosis in patients with intrahepatic cholangiocarcinoma. World J Clin Cases 2022;10:790-801.

106. Deng M, Li SH, Fu X, et al. Relationship between PD-L1 expression, CD8+ T-cell infiltration and prognosis in intrahepatic cholangiocarcinoma patients. Cancer Cell Int 2021;21:371.

107. Tian L, Ma J, Ma L, et al. PD-1/PD-L1 expression profiles within intrahepatic cholangiocarcinoma predict clinical outcome. World J Surg Oncol 2020;18:303.

108. Dong Z, Liao B, Shen W, Sui C, Yang J. Expression of programmed death ligand 1 is associated with the prognosis of intrahepatic cholangiocarcinoma. Dig Dis Sci 2020;65:480-8.

109. Zhu Y, Wang XY, Zhang Y, et al. Programmed death ligand 1 expression in human intrahepatic cholangiocarcinoma and its association with prognosis and CD8+ T-cell immune responses. Cancer Manag Res 2018;10:4113-23.

110. Cheng R, Chen Y, Zhou H, Wang B, Du Q, Chen Y. B7-H3 expression and its correlation with clinicopathologic features, angiogenesis, and prognosis in intrahepatic cholangiocarcinoma. J Pathol Microbiol Immunol 2018;126:396-402.

111. Miyazaki K, Morine Y, Imura S, et al. Preoperative lymphocyte/C-reactive protein ratio and its correlation with CD8+ tumor-infiltrating lymphocytes as a predictor of prognosis after resection of intrahepatic cholangiocarcinoma. Surg Today 2021;51:1985-95.

112. Yang H, Yan M, Li W, Xu L. SIRPα and PD1 expression on tumor-associated macrophage predict prognosis of intrahepatic cholangiocarcinoma. J Transl Med 2022;20:140.

113. Xu L, Yan M, Long J, Liu M, Yang H, Li W. Identification of macrophage correlated biomarkers to predict the prognosis in patients with intrahepatic cholangiocarcinoma. Front Oncol 2022;12:967982.

114. Sun D, Luo T, Dong P, et al. CD86+/CD206+ tumor-associated macrophages predict prognosis of patients with intrahepatic cholangiocarcinoma. PeerJ 2020;8:e8458.

115. Oishi K, Sakaguchi T, Baba S, Suzuki S, Konno H. Macrophage density and macrophage colony-stimulating factor expression predict the postoperative prognosis in patients with intrahepatic cholangiocarcinoma. Surg Today 2015;45:715-22.

116. Xu Y, Li Z, Zhou Y, et al. Using immunovascular characteristics to predict very early recurrence and prognosis of resectable intrahepatic cholangiocarcinoma. BMC Cancer 2023;23:1009.

117. Ding GY, Ma JQ, Yun JP, et al. Distribution and density of tertiary lymphoid structures predict clinical outcome in intrahepatic cholangiocarcinoma. J Hepatol 2022;76:608-18.

118. Doi N, Ino Y, Fuse M, Esaki M, Shimada K, Hiraoka N. Correlation of vein-rich tumor microenvironment of intrahepatic cholangiocarcinoma with tertiary lymphoid structures and patient outcome. Mod Pathol 2024;37:100401.

119. Hu ZQ, Zhou ZJ, Luo CB, et al. Peritumoral plasmacytoid dendritic cells predict a poor prognosis for intrahepatic cholangiocarcinoma after curative resection. Cancer Cell Int 2020;20:582.

120. Fukuda Y, Asaoka T, Eguchi H, et al. Endogenous CXCL9 affects prognosis by regulating tumor-infiltrating natural killer cells in intrahepatic cholangiocarcinoma. Cancer Sci 2020;111:323-33.

121. Zhu C, Ma J, Zhu K, et al. Spatial immunophenotypes predict clinical outcome in intrahepatic cholangiocarcinoma. JHEP Rep 2023;5:100762.

122. Thongchot S, Vidoni C, Ferraresi A, et al. Dihydroartemisinin induces apoptosis and autophagy-dependent cell death in cholangiocarcinoma through a DAPK1-BECLIN1 pathway. Mol Carcinog 2018;57:1735-50.

123. Thongchot S, Vidoni C, Ferraresi A, et al. Cancer-associated fibroblast-derived IL-6 determines unfavorable prognosis in cholangiocarcinoma by affecting autophagy-associated chemoresponse. Cancers 2021;13:2134.

124. Thongchot S, Ferraresi A, Vidoni C, et al. Preclinical evidence for preventive and curative effects of resveratrol on xenograft cholangiocarcinogenesis. Cancer Lett 2024;582:216589.

125. Liu Z, Weng S, Xu H, et al. Computational recognition and clinical verification of TGF-β-derived mirna signature with potential implications in prognosis and immunotherapy of intrahepatic cholangiocarcinoma. Front Oncol 2021;11:757919.

126. Zeng TM, Pan YF, Yuan ZG, Chen DS, Song YJ, Gao Y. Immune-related RNA signature predicts outcome of PD-1 inhibitor-combined GEMCIS therapy in advanced intrahepatic cholangiocarcinoma. Front Immunol 2022;13:943066.

127. Yue Y, Tao J, An D, Shi L. Exploring the role of tumor stemness and the potential of stemness-related risk model in the prognosis of intrahepatic cholangiocarcinoma. Front Genet 2022;13:1089405.

128. Tian MX, Zhou YF, Qu WF, et al. Histopathology-based immunoscore predicts recurrence for intrahepatic cholangiocarcinoma after hepatectomy. Cancer Immunol Immun 2019;68:1369-78.

129. Zhang LT, Yang YF, Chen XM, Wang SB, Tong GL. IL23R as an indicator of immune infiltration and poor prognosis in intrahepatic cholangiocarcinoma: a bioinformatics analysis. Transl Cancer Res 2023;12:2461-76.

130. Liang J, Zhou H, Huang XQ, et al. A myeloid signature-based nomogram predicts the postoperative recurrence of intrahepatic cholangiocarcinoma. Front Mol Biosci 2021;8:742953.

131. Hwang JA, Lee S, Lee JE, Yoon J, Choi SY, Shin J. LI-RADS Category on MRI is associated with recurrence of intrahepatic cholangiocarcinoma after surgery: a multicenter study. J Magn Reson Imaging 2023;57:930-8.

132. Nishioka E, Tsurusaki M, Kozuki R, et al. Comparison of conventional imaging and 18F-fluorodeoxyglucose positron emission tomography/computed tomography in the diagnostic accuracy of staging in patients with intrahepatic cholangiocarcinoma. Diagnostics 2022;12:2889.

133. Lin Y, Chong H, Song G, et al. The influence of 18F-fluorodeoxyglucose positron emission tomography/computed tomography on the N- and M-staging and subsequent clinical management of intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr 2022;11:684-95.

134. Ikeno Y, Seo S, Iwaisako K, et al. Preoperative metabolic tumor volume of intrahepatic cholangiocarcinoma measured by 18F-FDG-PET is associated with the KRAS mutation status and prognosis. J Transl Med 2018;16:95.

135. Brunese MC, Fantozzi MR, Fusco R, et al. Update on the applications of radiomics in diagnosis, staging, and recurrence of intrahepatic cholangiocarcinoma. Diagnostics 2023;13:1488.

136. Wakiya T, Ishido K, Kimura N, et al. CT-based deep learning enables early postoperative recurrence prediction for intrahepatic cholangiocarcinoma. Sci Rep 2022;12:8428.

137. Chen B, Mao Y, Li J, et al. Predicting very early recurrence in intrahepatic cholangiocarcinoma after curative hepatectomy using machine learning radiomics based on CECT: a multi-institutional study. Comput Biol Med 2023;167:107612.

138. Bo Z, Chen B, Yang Y, et al. Machine learning radiomics to predict the early recurrence of intrahepatic cholangiocarcinoma after curative resection: a multicentre cohort study. Eur J Nucl Med Mol Imaging 2023;50:2501-13.

139. Jolissaint JS, Wang T, Soares KC, et al. Machine learning radiomics can predict early liver recurrence after resection of intrahepatic cholangiocarcinoma. HPB 2022;24:1341-50.

140. Hao X, Liu B, Hu X, et al. A radiomics-based approach for predicting early recurrence in intrahepatic cholangiocarcinoma after surgical resection: a multicenter study. Annu Int Conf IEEE Eng Med Biol Soc 2021;2021:3659-62.

141. Zhang J, Wu Z, Zhang X, et al. Machine learning: an approach to preoperatively predict PD-1/PD-L1 expression and outcome in intrahepatic cholangiocarcinoma using MRI biomarkers. ESMO Open 2020;5:e000910.

142. Xu Y, Li Z, Yang Y, et al. A CT-based radiomics approach to predict intra-tumoral tertiary lymphoid structures and recurrence of intrahepatic cholangiocarcinoma. Insights Imaging 2023;14:173.

143. Wang J, Huang M, Shen J, et al. Development and external validation of a prognosis model to predict outcomes after curative resection of early-stage intrahepatic cholangiocarcinoma. Front Surg 2023;10:1102871.

144. Li Q, Zhang J, Chen C, et al. A nomogram model to predict early recurrence of patients with intrahepatic cholangiocarcinoma for adjuvant chemotherapy guidance: a multi-institutional analysis. Front Oncol 2022;12:896764.

145. Tsilimigras DI, Endo Y, Guglielmi A, et al. Recurrent intrahepatic cholangiocarcinoma: a 10-point score to predict post-recurrence survival and guide treatment of recurrence. Ann Surg Oncol 2024;31:4427-35.

146. Nassar A, Tzedakis S, Sindayigaya R, et al. Factors of early recurrence after resection for intrahepatic cholangiocarcinoma. World J Surg 2022;46:2459-67.

147. Choi WJ, Williams PJ, Claasen MPAW, et al. Systematic review and meta-analysis of prognostic factors for early recurrence in intrahepatic cholangiocarcinoma after curative-intent resection. Ann Surg Oncol ;2022:4337-53.

148. Zhang XF, Beal EW, Bagante F, et al. Early versus late recurrence of intrahepatic cholangiocarcinoma after resection with curative intent. Br J Surg 2018;105:848-56.

149. Akaoka M, Haruki K, Furukawa K, et al. Analysis of preoperative risk factors for early recurrence in patients after hepatic resection for intrahepatic cholangiocarcinoma. Am Surg 2024;90:1148-55.

150. Li H, Liu R, Qiu H, et al. Tumor burden score stratifies prognosis of patients with intrahepatic cholangiocarcinoma after hepatic resection: a retrospective, multi-institutional study. Front Oncol 2022;12:829407.

151. Tsilimigras DI, Moris D, Hyer JM, et al. Hepatocellular carcinoma tumour burden score to stratify prognosis after resection. Br J Surg 2020;107:854-64.

152. Lv Y, Liu H, He P, et al. A novel model for predicting the prognosis of postoperative intrahepatic cholangiocarcinoma patients. Sci Rep 2023;13:19267.

153. Alaimo L, Moazzam Z, Endo Y, et al. Long-term recurrence-free and overall survival differ based on common, proliferative, and inflammatory subtypes after resection of intrahepatic cholangiocarcinoma. Ann Surg Oncol 2023;30:1392-403.

154. Alaimo L, Moazzam Z, Brown ZJ, et al. Application of hazard function to investigate recurrence of intrahepatic cholangiocarcinoma after curative-intent liver resection: a novel approach to characterize recurrence. Ann Surg Oncol 2023;30:1340-9.

155. Moro A, Paredes AZ, Farooq A, et al. Discordance in prediction of prognosis among patients with intrahepatic cholangiocarcinoma: a preoperative vs postoperative perspective. J Surg Oncol 2019;120:946-55.

156. Alaimo L, Lima HA, Moazzam Z, et al. Development and validation of a machine-learning model to predict early recurrence of intrahepatic cholangiocarcinoma. Ann Surg Oncol 2023;30:5406-15.

157. Buettner S, Galjart B, van Vugt JLA, et al. Performance of prognostic scores and staging systems in predicting long-term survival outcomes after surgery for intrahepatic cholangiocarcinoma. J Surg Oncol 2017;116:1085-95.

158. Alaimo L, Pawlik TM. ASO author reflections: use of machine learning to predict early recurrence after resection of intrahepatic cholangiocarcinoma. Ann Surg Oncol 2023;30:5416-7.

159. Bagante F, Spolverato G, Cucchetti A, et al. Defining when to offer operative treatment for intrahepatic cholangiocarcinoma: a regret-based decision curves analysis. Surgery 2016;160:106-17.

160. Wilson A, Winner M, Yahanda A, Andreatos N, Ronnekleiv-Kelly S, Pawlik TM. Factors associated with decisional regret among patients undergoing major thoracic and abdominal operations. Surgery 2017;161:1058-66.

161. Kodama K, Kawaoka T, Kosaka M, et al. Calcium channel blockers improve the prognosis of patients with intrahepatic cholangiocarcinoma after resection. J Gastroenterol 2022;57:676-83.

162. Yang Y, Lin M, Zhao H, Peng Y, Huang F, Lu Z. A survey of recent methods for addressing AI fairness and bias in biomedicine. J Biomed Inform 2024;154:104646.

163. Giuliano AE, Connolly JL, Edge SB, et al. Breast cancer-major changes in the American joint committee on cancer eighth edition cancer staging manual. CA Cancer J Clin 2017;67:290-303.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/