REFERENCES
2. Saani I, Raj N, Sood R, et al. Clinical challenges in the management of malignant ovarian germ cell tumours. Int J Environ Res Public Health 2023;20:6089.
3. Bailey M, Morand S, Royfman R, et al. Targeted combination of poly(ADP-ribose) polymerase inhibitors and immune checkpoint inhibitors lacking evidence of benefit: focus in ovarian cancer. Int J Mol Sci 2024;25:3173.
4. Gupta S, Nag S, Aggarwal S, Rauthan A, Warrier N. Maintenance therapy for recurrent epithelial ovarian cancer: current therapies and future perspectives - a review. J Ovarian Res 2019;12:103.
5. Secord A, O’Malley DM, Sood AK, Westin SN, Liu JF. Rationale for combination PARP inhibitor and antiangiogenic treatment in advanced epithelial ovarian cancer: a review. Gynecol Oncol 2021;162:482-95.
6. Kurnit KC, Coleman RL, Westin SN. Using PARP inhibitors in the treatment of patients with ovarian cancer. Curr Treat Options Oncol 2018;19:1.
7. Capuozzo M, Celotto V, Santorsola M, et al. Emerging treatment approaches for triple-negative breast cancer. Med Oncol 2023;41:5.
8. Capuozzo M, Ferrara F, Santorsola M, Zovi A, Ottaiano A. Circulating tumor cells as predictive and prognostic biomarkers in solid tumors. Cells 2023;12:2590.
9. Salmaninejad A, Valilou SF, Shabgah AG, et al. PD-1/PD-L1 pathway: basic biology and role in cancer immunotherapy. J Cell Physiol 2019;234:16824-37.
10. Akinleye A, Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol 2019;12:92.
11. Wakabayashi G, Lee YC, Luh F, Kuo CN, Chang WC, Yen Y. Development and clinical applications of cancer immunotherapy against PD-1 signaling pathway. J Biomed Sci 2019;26:96.
12. Hamanishi J, Mandai M, Iwasaki M, et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 2007;104:3360-5.
13. Maine CJ, Aziz NH, Chatterjee J, et al. Programmed death ligand-1 over-expression correlates with malignancy and contributes to immune regulation in ovarian cancer. Cancer Immunol Immunother 2014;63:215-24.
14. Santoiemma PP, Powell DJ Jr. Tumor infiltrating lymphocytes in ovarian cancer. Cancer Biol Ther 2015;16:807-20.
15. Sun J, Yan C, Xu D, et al. Immuno-genomic characterisation of high-grade serous ovarian cancer reveals immune evasion mechanisms and identifies an immunological subtype with a favourable prognosis and improved therapeutic efficacy. Br J Cancer 2022;126:1570-80.
16. Wilkinson AN, Chen R, Coleborn E, et al. Let-7i enhances anti-tumour immunity and suppresses ovarian tumour growth. Cancer Immunol Immunother 2024;73:80.
17. Pugh-Toole M, Nicolela AP, Nersesian S, Leung BM, Boudreau JE. Natural killer cells: the missing link in effective treatment for high-grade serous ovarian carcinoma. Curr Treat Options Oncol 2022;23:210-26.
18. Janardhanan M, Smitha NV, Rajalakshmi G, George A, Koyakutty M, Iyer S. Tumour microenvironment as a potential immune therapeutic target for tongue cancer management. J Oral Maxillofac Pathol 2023;27:382-9.
19. Asadi M, Zarredar H, Zafari V, et al. Immune features of tumor microenvironment: a genetic spotlight. Cell Biochem Biophys 2024;82:107-18.
20. Das A, Ghose A, Naicker K, et al. Advances in adoptive T-cell therapy for metastatic melanoma. Curr Res Transl Med 2023;71:103404.
21. Hamanishi J, Mandai M, Ikeda T, et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J Clin Oncol 2015;33:4015-22.
22. Nishio S, Matsumoto K, Takehara K, et al. Pembrolizumab monotherapy in Japanese patients with advanced ovarian cancer: subgroup analysis from the KEYNOTE-100. Cancer Sci 2020;111:1324-32.
23. Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res 2013;73:3591-603.
24. Duraiswamy J, Freeman GJ, Coukos G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors-response. Cancer Res 2014;74:633-4.
25. Chen J, Li S, Yao Q, et al. The efficacy and safety of combined immune checkpoint inhibitors (nivolumab plus ipilimumab): a systematic review and meta-analysis. World J Surg Oncol 2020;18:150.
26. Shoushtari AN, Friedman CF, Navid-Azarbaijani P, et al. Measuring toxic effects and time to treatment failure for nivolumab plus ipilimumab in melanoma. JAMA Oncol 2018;4:98-101.
27. Zamarin D, Burger RA, Sill MW, et al. Randomized phase II trial of nivolumab versus nivolumab and ipilimumab for recurrent or persistent ovarian cancer: an NRG oncology study. J Clin Oncol 2020;38:1814-23.
28. Wang H, Franco F, Ho PC. Metabolic regulation of tregs in cancer: opportunities for immunotherapy. Trends Cancer 2017;3:583-92.
29. Gao X, McDermott DF. Combinations of bevacizumab with immune checkpoint inhibitors in renal cell carcinoma. Cancer J 2018;24:171-9.
30. Chen Y, Li F, Li D, Liu W, Zhang L. Atezolizumab and blockade of LncRNA PVT1 attenuate cisplatin resistant ovarian cancer cells progression synergistically via JAK2/STAT3/PD-L1 pathway. Clin Immunol 2021;227:108728.
31. Liu JF, Herold C, Gray KP, et al. Assessment of combined nivolumab and bevacizumab in relapsed ovarian cancer: a phase 2 clinical trial. JAMA Oncol 2019;5:1731-8.
32. Pignata S, Bookman M, Sehouli J, et al. Overall survival and patient-reported outcome results from the placebo-controlled randomized phase III IMagyn050/GOG 3015/ENGOT-OV39 trial of atezolizumab for newly diagnosed stage III/IV ovarian cancer. Gynecol Oncol 2023;177:20-31.
33. Kurtz JE, Pujade-Lauraine E, Oaknin A, et al. Atezolizumab combined with bevacizumab and platinum-based therapy for platinum-sensitive ovarian cancer: placebo-controlled randomized phase III ATALANTE/ENGOT-ov29 trial. J Clin Oncol 2023;41:4768-78.
34. Higuchi T, Flies DB, Marjon NA, et al. CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer. Cancer Immunol Res 2015;3:1257-68.
35. Lorusso D, Ceni V, Daniele G, et al. Immunotherapy in gynecological cancers. Explor Target Antitumor Ther 2021;2:48-64.
36. Stewart RA, Pilié PG, Yap TA. Development of PARP and immune-checkpoint inhibitor combinations. Cancer Res 2018;78:6717-25.
37. Lee EK, Konstantinopoulos PA. Combined PARP and Immune checkpoint inhibition in ovarian cancer. Trends Cancer 2019;5:524-8.
38. Murray JL, Przepiorka D, Ioannides CG. Clinical trials of HER-2/neu-specific vaccines. Semin Oncol 2000;27:71-5.
39. IeM, Kurman RJ. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol 2004;164:1511-8.
40. Ding J, Zhang Y, Che Y. Ovarian cancer stem cells: critical roles in anti-tumor immunity. Front Genet 2022;13:998220.
42. Capuozzo M, Santorsola M, Bocchetti M, et al. p53: from fundamental biology to clinical applications in cancer. Biology 2022;11:1325.
43. Hilliard TS. The impact of mesothelin in the ovarian cancer tumor microenvironment. Cancers 2018;10:277.
44. Vandin F. Computational methods for characterizing cancer mutational heterogeneity. Front Genet 2017;8:83.
45. Szender JB, Papanicolau-Sengos A, Eng KH, et al. NY-ESO-1 expression predicts an aggressive phenotype of ovarian cancer. Gynecol Oncol 2017;145:420-5.
46. Pavlick A, Blazquez AB, Meseck M, et al. Combined vaccination with NY-ESO-1 protein, Poly-ICLC, and montanide improves humoral and cellular immune responses in patients with high-risk melanoma. Cancer Immunol Res 2020;8:70-80.
47. Wada H, Isobe M, Kakimi K, et al. Vaccination with NY-ESO-1 overlapping peptides mixed with Picibanil OK-432 and montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen. J Immunother 2014;37:84-92.
48. Odunsi K, Qian F, Matsuzaki J, et al. Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer. Proc Natl Acad Sci USA 2007;104:12837-42.
49. Srivastava PK. Cancer neoepitopes viewed through negative selection and peripheral tolerance: a new path to cancer vaccines. J Clin Invest 2024;134:e176740.
50. Zhang Z, Lu M, Qin Y, et al. Neoantigen: a new breakthrough in tumor immunotherapy. Front Immunol 2021;12:672356.
51. Tu SM, Trikannad AK, Vellanki S, et al. Stem cell origin of cancer: clinical implications beyond immunotherapy for drug versus therapy development in cancer care. Cancers 2024;16:1151.
52. Morisaki T, Hikichi T, Onishi H, et al. Intranodal administration of neoantigen peptide-loaded dendritic cell vaccine elicits epitope-specific T cell responses and clinical effects in a patient with chemorefractory ovarian cancer with malignant ascites. Immunol Invest 2021;50:562-79.
53. Yu R, Zhao F, Xu Z, Zhang G, Du B, Shu Q. Current status and future of cancer vaccines: a bibliographic study. Heliyon 2024;10:e24404.
54. Kverneland AH, Pedersen M, Westergaard MCW, et al. Adoptive cell therapy in combination with checkpoint inhibitors in ovarian cancer. Oncotarget 2020;11:2092-105.
55. Rocconi RP, Stevens EE, Bottsford-Miller JN, et al. Proof of principle study of sequential combination atezolizumab and Vigil in relapsed ovarian cancer. Cancer Gene Ther 2022;29:369-82.
56. Chen L, Ma Z, Xu C, et al. Progress in oncolytic viruses modified with nanomaterials for intravenous application. Cancer Biol Med 2023;20:830-55.
57. Feola S, Russo S, Ylösmäki E, Cerullo V. Oncolytic ImmunoViroTherapy: a long history of crosstalk between viruses and immune system for cancer treatment. Pharmacol Ther 2022;236:108103.
58. Oh CM, Chon HJ, Kim C. Combination immunotherapy using oncolytic virus for the treatment of advanced solid tumors. Int J Mol Sci 2020;21:7743.
59. Jin KT, Du WL, Liu YY, Lan HR, Si JX, Mou XZ. Oncolytic virotherapy in solid tumors: the challenges and achievements. Cancers 2021;13:588.
60. Hu H, Zhang S, Cai L, et al. A novel cocktail therapy based on quintuplet combination of oncolytic herpes simplex virus-2 vectors armed with interleukin-12, interleukin-15, GM-CSF, PD1v, and IL-7 × CCL19 results in enhanced antitumor efficacy. Virol J 2022;19:74.
61. Huang F, Dai C, Zhang Y, Zhao Y, Wang Y, Ru G. Development of molecular mechanisms and their application on oncolytic newcastle disease virus in cancer therapy. Front Mol Biosci 2022;9:889403.
62. Krishna S, Lowery FJ, Copeland AR, et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 2020;370:1328-34.
63. Dudley ME, Wunderlich JR, Yang JC, et al. A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J Immunother 2002;25:243-51.
64. Albarrán V, San Román M, Pozas J, et al. Adoptive T cell therapy for solid tumors: current landscape and future challenges. Front Immunol 2024;15:1352805.
65. Pedersen M, Westergaard MCW, Milne K, et al. Adoptive cell therapy with tumor-infiltrating lymphocytes in patients with metastatic ovarian cancer: a pilot study. Oncoimmunology 2018;7:e1502905.
66. Verdegaal EME, Santegoets SJ, Welters MJP, et al. Timed adoptive T cell transfer during chemotherapy in patients with recurrent platinum-sensitive epithelial ovarian cancer. J Immunother Cancer 2023;11:e007697.
67. Marofi F, Motavalli R, Safonov VA, et al. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res Ther 2021;12:81.
68. Li YR, Halladay T, Yang L. Immune evasion in cell-based immunotherapy: unraveling challenges and novel strategies. J Biomed Sci 2024;31:5.
69. Klampatsa A, Dimou V, Albelda SM. Mesothelin-targeted CAR-T cell therapy for solid tumors. Expert Opin Biol Ther 2021;21:473-86.
70. Schoutrop E, El-Serafi I, Poiret T, et al. Mesothelin-specific CAR T cells target ovarian cancer. Cancer Res 2021;81:3022-35.
71. Chekmasova AA, Rao TD, Nikhamin Y, et al. Successful eradication of established peritoneal ovarian tumors in SCID-Beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen. Clin Cancer Res 2010;16:3594-606.
72. Frigerio B, Montermini M, Silvana C, Figini M. Role of antibody engineering in generation of derivatives starting from MOv19 MAb: 40 years of biological/therapeutic tools against folate receptor alfa. Antib Ther 2022;5:301-10.
73. Daigre J, Martinez-Osuna M, Bethke M, et al. Preclinical evaluation of novel folate receptor 1-directed CAR T cells for ovarian cancer. Cancers 2024;16:333.
74. Zuo S, Wen Y, Panha H, et al. Modification of cytokine-induced killer cells with folate receptor alpha (FRα)-specific chimeric antigen receptors enhances their antitumor immunity toward FRα-positive ovarian cancers. Mol Immunol 2017;85:293-304.
75. Han C, McNamara B, Bellone S, et al. The Poly (ADP-ribose) polymerase inhibitor olaparib and pan-ErbB inhibitor neratinib are highly synergistic in HER2 overexpressing epithelial ovarian carcinoma in vitro and in vivo. Gynecol Oncol 2023;170:172-8.
76. Jiang D, Im HJ, Sun H, et al. Radiolabeled pertuzumab for imaging of human epidermal growth factor receptor 2 expression in ovarian cancer. Eur J Nucl Med Mol Imaging 2017;44:1296-305.
77. Ma LS, Yan QI, Huang Y, Zhao W, Zhu YU. Downregulation of human epidermal growth factor receptor 2 by short hairpin RNA increases chemosensitivity of human ovarian cancer cells. Oncol Lett 2015;9:2211-7.
78. Ferrara F, Zovi A, Capuozzo M, Langella R. Atopic dermatitis: treatment and innovations in immunotherapy. Inflammopharmacology 2024;32:1777-89.
79. Seifeddine R, Dreiem A, Blanc E, et al. Hypoxia down-regulates CCAAT/enhancer binding protein-alpha expression in breast cancer cells. Cancer Res 2008;68:2158-65.
80. Altwerger G, Ghazarian M, Glazer PM. Harnessing the effects of hypoxia-like inhibition on homology-directed DNA repair. Semin Cancer Biol 2024;98:11-8.
81. Henning W, Stürzbecher HW. Homologous recombination and cell cycle checkpoints: Rad51 in tumour progression and therapy resistance. Toxicology 2003;193:91-109.
82. Zhuang Y, Liu K, He Q, Gu X, Jiang C, Wu J. Hypoxia signaling in cancer: implications for therapeutic interventions. MedComm 2023;4:e203.
83. Revythis A, Limbu A, Mikropoulos C, et al. Recent insights into PARP and immuno-checkpoint inhibitors in epithelial ovarian cancer. Int J Environ Res Public Health 2022;19:8577.
84. Giannone G, Ghisoni E, Genta S, et al. Immuno-metabolism and microenvironment in cancer: key players for immunotherapy. Int J Mol Sci 2020;21:4414.
85. Guerrouahen BS, Maccalli C, Cugno C, Rutella S, Akporiaye ET. Reverting immune suppression to enhance cancer immunotherapy. Front Oncol 2019;9:1554.
86. Wang Y, Wang Y, Ren Y, Zhang Q, Yi P, Cheng C. Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Semin Cancer Biol 2022;86:542-65.