REFERENCES
1. Lazar AJ, McLellan MD, Bailey MH, et al. Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell 2017;171:950-65.
2. Chudasama P, Mughal SS, Sanders MA, et al. Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nat Commun 2018;9:144.
3. Wong J. 2018. Available from: https://www.mdpi.com/2077-0383/10/9/2028 [Last accessed on 2 August 2022]. .
4. Ballinger ML, Goode DL, Ray-coquard I, et al. Monogenic and polygenic determinants of sarcoma risk: an international genetic study. Lancet Oncol 2016;17:1261-71.
5. Brohl AS, Patidar R, Turner CE, et al. Frequent inactivating germline mutations in DNA repair genes in patients with Ewing sarcoma. Genet Med 2017;19:955-8.
6. Schultz KAP, Williams GM, Kamihara J, et al. DICER1 and associated conditions: identification of at-risk individuals and recommended surveillance strategies. Clin Cancer Res 2018;24:2251-61.
7. Hettmer S, Archer NM, Somers GR, et al. Anaplastic rhabdomyosarcoma in TP53 germline mutation carriers. Cancer 2014;120:1068-75.
8. Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet 2002;39:311-4.
9. Francom CR, Leoniak SM, Lovell MA, Herrmann BW. Head and neck pleomorphic myxoid liposarcoma in a child with Li-Fraumeni syndrome. Int J Pediatr Otorhinolaryngol 2019;123:191-4.
10. Hensley ML, Chavan SS, Solit DB, et al. Genomic landscape of uterine sarcomas defined through prospective clinical sequencing. Clin Cancer Res 2020;26:3881-8.
11. Network NCC. Genetic/familial high-risk assessment: colorectal (version 1.2021). 2021.
12. Hampel H, Bennett RL, Buchanan A, et al. A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment. Genet Med 2015;17:70-87.
13. Gastrointestinal Stromal Tumor (GIST), NCCN, editor. 2022. Available from: https://www.nccn.org/professionals/physician_gls/pdf/gist.pdf [Last accessed on 2 August 2022]. .
14. Lupo PJ, Danysh HE, Plon SE, et al. Family history of cancer and childhood rhabdomyosarcoma: a report from the Children’s Oncology Group and the Utah Population Database. Cancer Med 2015;4:781-90.
15. Li H, Sisoudiya SD, Martin-Giacalone BA, et al. Germline cancer predisposition variants in pediatric rhabdomyosarcoma: a report from the children’s oncology group. J Natl Cancer Inst 2021;113:875-83.
16. Kim J, Light N, Subasri V, et al. Pathogenic germline variants in cancer susceptibility genes in children and young adults with rhabdomyosarcoma. JCO Precis Oncol 2021;5:75-87.
17. Diller L, Sexsmith E, Gottlieb A, Li FP, Malkin D. Germline p53 mutations are frequently detected in young children with rhabdomyosarcoma. J Clin Invest 1995;95:1606-11.
18. Bougeard G, Renaux-Petel M, Flaman JM, et al. Revisiting Li-fraumeni syndrome from TP53 mutation carriers. J Clin Oncol 2015;33:2345-52.
19. Apellaniz-Ruiz M, McCluggage WG, Foulkes WD. DICER1-associated embryonal rhabdomyosarcoma and adenosarcoma of the gynecologic tract: Pathology, molecular genetics, and indications for molecular testing. Genes Chromosomes Cancer 2021;60:217-33.
20. Warren M, Hiemenz MC, Schmidt R, et al. Expanding the spectrum of dicer1-associated sarcomas. Mod Pathol 2020;33:164-74.
21. de Kock L, Yoon J-Y, Apellaniz-Ruiz M, et al. Significantly greater prevalence of DICER1 alterations in uterine embryonal rhabdomyosarcoma compared to adenosarcoma. Moder Pathol 2020;33:1207-19.
22. Miyama Y, Makise N, Miyakawa J, Kume H, Fukayama M, Ushiku T. An autopsy case of prostatic rhabdomyosarcoma with DICER1 hotspot mutation. Pathol Int 2021;71:102-8.
23. Doros L, Yang J, Dehner L, et al. DICER1 mutations in embryonal rhabdomyosarcomas from children with and without familial PPB-tumor predisposition syndrome. Pediatric Blood Cancer 2012;59:558-60.
24. Martin-Giacalone BA, Weinstein PA, Plon SE, Lupo PJ. Pediatric rhabdomyosarcoma: epidemiology and genetic susceptibility. J Clin Med 2021;10:2028.
26. Kratz CP, Holter S, Etzler J, et al. Rhabdomyosarcoma in patients with constitutional mismatch-repair-deficiency syndrome. J Med Genet 2009;46:418-20.
27. Mussa A, Molinatto C, Baldassarre G, et al. Cancer risk in beckwith-wiedemann syndrome: a systematic review and meta-analysis outlining a novel (Epi)genotype specific histotype targeted screening protocol. J Pediatr 2016;176:142-149.e1.
28. Brioude F, Netchine I, Praz F, et al. Mutations of the imprinted CDKN1C gene as a cause of the overgrowth Beckwith-Wiedemann syndrome: clinical spectrum and functional characterization. Human Mutat 2015;36:894-902.
29. Valentin T, Le Cesne A, Ray-Coquard I, et al. Management and prognosis of malignant peripheral nerve sheath tumors: the experience of the French Sarcoma Group (GSF-GETO). Eur J Cancer 2016;56:77-84.
30. Stucky CC, Johnson KN, Gray RJ, et al. Malignant peripheral nerve sheath tumors (MPNST): the Mayo Clinic experience. Ann Surg Oncol 2012;19:878-85.
31. Ducatman BS, Scheithauer BW, Piepgras DG, Reiman HM, Ilstrup DM. Malignant peripheral nerve sheath tumors. a clinicopathologic study of 120 cases. Cancer 1986;57:2006-21.
32. Wong WW, Hirose T, Scheithauer BW, Schild SE, Gunderson LL. Malignant peripheral nerve sheath tumor: analysis of treatment outcome. Int J Radia Oncol Biol Phys 1998;42:351-60.
33. Anghileri M, Miceli R, Fiore M, et al. Malignant peripheral nerve sheath tumors: prognostic factors and survival in a series of patients treated at a single institution. Cancer 2006;107:1065-74.
34. Evans DG, Huson SM, Birch JM. Malignant peripheral nerve sheath tumours in inherited disease. Clin Sarcoma Res 2012;2:17.
35. Upadhyaya SA, McGee RB, Wilky BA, Broniscer A. Malignant progression of a peripheral nerve sheath tumor in the setting of rhabdoid tumor predisposition syndrome. Pediatr Blood Cancer 2018;65:e27030.
36. Eelloo JA, Smith MJ, Bowers NL, et al. Multiple primary malignancies associated with a germline SMARCB1 pathogenic variant. Fam Cancer 2019;18:445-9.
37. King AT, Rutherford SA, Hammerbeck-Ward C, et al. Malignant peripheral nerve sheath tumors are not a feature of neurofibromatosis type 2 in the unirradiated patient. Neurosurgery 2018;83:38-42.
38. Agresta L, Salloum R, Hummel TR, et al. Malignant peripheral nerve sheath tumor: Transformation in a patient with neurofibromatosis type 2. Pediatr Blood Cancer 2019;66:e27520.
39. Gargallo P, Yanez Y, Juan A, et al. Review: Ewing Sarcoma Predisposition. Pathol Oncol Res 2020;26:2057-66.
40. Randall R, Lessnick S, Jones K, et al. Is there a predisposition gene for Ewing’s sarcoma? J Oncol 2010;2010:397632.
42. Joyce MJ, Harmon DC, Mankin HJ, Suit HD, Schiller AL, Truman JT. Ewing’s sarcoma in female siblings: a clinical report and review of the literature. Cancer 1984;53:1959-62.
43. Abbott D, Randall RL, Schiffman J, Lessnick S, Cannon-Albright LA. A population-based survey of excess cancers observed in Ewing’s sarcoma and in their first-, second-, and third-degree relatives. AACR, 2015. (ISBN No. 0008-5472).
44. Venier RE, Maurer LM, Kessler EM, et al. A germline BARD1 mutation in a patient with Ewing Sarcoma: Implications for familial testing and counseling. Pediatr Blood Cancer 2019;66:e27824.
45. Fernandez KS, Turski ML, Shah AT, et al. Ewing sarcoma in a child with neurofibromatosis type 1. Cold Spring Harb Mol Case Stud 2019;5:a004580.
46. Mehaffey C, Wahl D, Schaller T, et al. Heterozygous PALB2 Mutation in a Boy with Acute Lymphoblastic Leukemia and Subsequent Metastatic Ewing Sarcoma. Klin Padiatr 2021;233:141-4.
47. Kay RM, Eckardt JJ, Mirra JM. Osteosarcoma and Ewing’s sarcoma in a retinoblastoma patient. Clin Orthop Relat Res 1996;323:284-7.
48. Kleinerman RA, Tucker MA, Abramson DH, Seddon JM, Tarone RE, Fraumeni JF Jr. Risk of soft tissue sarcomas by individual subtype in survivors of hereditary retinoblastoma. J Natl Cancer Inst 2007;99:24-31.
49. Sinclair TJ, Thorson CM, Alvarez E, Tan S, Spunt SL, Chao SD. Pleomorphic myxoid liposarcoma in an adolescent with Li-Fraumeni syndrome. Pediatr Surg Int 2017;33:631-5.
50. Debelenko LV, Perez-Atayde AR, Dubois SG, et al. p53+/mdm2- atypical lipomatous tumor/well-differentiated liposarcoma in young children: an early expression of Li-Fraumeni syndrome. Pediatr Dev Pathol 2010;13:218-24.
51. Zare SY, Leivo M, Fadare O. Recurrent pleomorphic myxoid liposarcoma in a patient with li-fraumeni syndrome. Int J Surg Pathol 2020;28:225-8.
52. Sui X, Li Y, Zhao H, Wang J. Giant liposarcoma of the esophagus with Li-Fraumeni-like syndrome. Eur J Cardiothorac Surg 2011;40:1253-5.
53. Poli T, Lagana F, Caradonna L, et al. Primary orbital liposarcoma in Li-Fraumeni cancer family syndrome: a case report. Tumori 2005;91:96-100.
54. Sadri N, Surrey LF, Fraker DL, Zhang PJ. Retroperitoneal dedifferentiated liposarcoma lacking MDM2 amplification in a patient with a germ line CHEK2 mutation. Virchows Arch 2014;464:505-9.
55. Yozu M, Symmans P, Dray M, et al. Muir-Torre syndrome-associated pleomorphic liposarcoma arising in a previous radiation field. Virchows Arch 2013;462:355-60.
56. Kleinerman RA, Schonfeld SJ, Sigel BS, et al. Bone and soft-tissue sarcoma risk in long-term survivors of hereditary retinoblastoma treated with radiation. J Clin Oncol 2019;37:3436-45.
57. MacCarthy A, Bayne A, Brownbill P, et al. Second and subsequent tumours among 1927 retinoblastoma patients diagnosed in Britain 1951-2004. British J Cancer 2013;108:2455-63.
58. Schonfeld SJ, Kleinerman RA, Abramson DH, et al. Long-term risk of subsequent cancer incidence among hereditary and nonhereditary retinoblastoma survivors. British J Cancer 2021;124:1312-9.
59. Ji J, Eng C, Hemminki K. Familial risk for soft tissue tumors: a nation-wide epidemiological study from Sweden. J Cancer Res Clin Oncol 2008;134:617-24.
60. Koczkowska M, Lipska BS, Grzeszewska J, Limon J, Biernat W, Jassem J. Primary leiomyosarcoma of the mesentery in two sisters: clinical and molecular characteristics. Pol J Pathol 2013;64:59-63.
61. Kleinerman RA, Tucker MA, Tarone RE, et al. Risk of new cancers after radiotherapy in long-term survivors of retinoblastoma: an extended follow-up. J Clin Oncol 2005;23:2272-9.
62. Wong FL, Boice JD Jr, Abramson DH, et al. Cancer incidence after retinoblastoma. Radiation dose and sarcoma risk. JAMA 1997;278:1262-7.
63. Farid M, Ngeow J. Sarcomas associated with genetic cancer predisposition syndromes: a review. Oncologist 2016;21:1002-13.
64. Francis JH, Kleinerman RA, Seddon JM, Abramson DH. Increased risk of secondary uterine leiomyosarcoma in hereditary retinoblastoma. Gynecol Oncol 2012;124:254-9.
65. Bright CJ, Hawkins MM, Winter DL, et al. Risk of soft-tissue sarcoma among 69 460 five-year survivors of childhood cancer in Europe. J Natl Cancer Inst 2018;110:649-60.
66. Jonsson P, Bandlamudi C, Cheng ML, et al. Tumour lineage shapes BRCA-mediated phenotypes. Nature 2019;571:576-9.
67. Muller M, Ferlicot S, Guillaud-Bataille M, et al. Reassessing the clinical spectrum associated with hereditary leiomyomatosis and renal cell carcinoma syndrome in French FH mutation carriers. Clin Genet 2017;92:606-15.
68. Kraft S, Fletcher CD. Atypical intradermal smooth muscle neoplasms: clinicopathologic analysis of 84 cases and a reappraisal of cutaneous “leiomyosarcoma”. Am J Surg Pathol 2011;35:599-607.
69. Villani A, Tabori U, Schiffman J, et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol 2011;12:559-67.
70. de Andrade KC, Khincha PP, Hatton JN, et al. Cancer incidence, patterns, and genotype-phenotype associations in individuals with pathogenic or likely pathogenic germline TP53 variants: an observational cohort study. Lancet Oncol 2021;22:1787-98.
71. Robinson DR, Wu YM, Lonigro RJ, et al. Integrative clinical genomics of metastatic cancer. Nature 2017;548:297-303.
72. Le Guellec S, Soubeyran I, Rochaix P, et al. CTNNB1 mutation analysis is a useful tool for the diagnosis of desmoid tumors: a study of 260 desmoid tumors and 191 potential morphologic mimics. Modern Pathol 2012;25:1551-8.
73. Crago AM, Chmielecki J, Rosenberg M, et al. Near universal detection of alterations in CTNNB1 and Wnt pathway regulators in desmoid-type fibromatosis by whole-exome sequencing and genomic analysis. Genes Chromosomes Cancer 2015;54:606-15.
74. Fallen T, Wilson M, Morlan B, Lindor NM. Desmoid tumors-a characterization of patients seen at Mayo Clinic 1976-1999. Fam Cancer 2006;5:191-4.
75. Nieuwenhuis MH, Casparie M, Mathus-Vliegen LM, Dekkers OM, Hogendoorn PC, Vasen HF. A nation-wide study comparing sporadic and familial adenomatous polyposis-related desmoid-type fibromatoses. Int J Cancer 2011;129:256-61.
76. Honeyman JN, Theilen TM, Knowles MA, et al. Desmoid fibromatosis in children and adolescents: a conservative approach to management. J Pediatr Surg 2013;48:62-6.
77. Koskenvuo L, Ristimäki A, Lepistö A. Comparison of sporadic and FAP-associated desmoid-type fibromatoses. J Surg Oncol 2017;116:716-21.
78. Koskenvuo L, Peltomäki P, Renkonen-Sinisalo L, et al. Desmoid tumor patients carry an elevated risk of familial adenomatous polyposis. J Surg Oncol 2016;113:209-12.
79. Brennan B, Stiller C, Bourdeaut F. Extracranial rhabdoid tumours: what we have learned so far and future directions. Lancet Oncol 2013;14:e329-e36.
80. Eaton KW, Tooke LS, Wainwright LM, Judkins AR, Biegel JA. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer 2011;56:7-15.
81. Bourdeaut F, Lequin D, Brugières L, et al. Frequent hSNF5/INI1 germline mutations in patients with rhabdoid tumor. Clin Cancer Res 2011;17:31-8.
82. Foulkes WD, Kamihara J, Evans DGR, et al. Cancer surveillance in gorlin syndrome and rhabdoid tumor predisposition syndrome. Clin Cancer Res 2017;23:e62-7.
83. Schneppenheim R, Frühwald MC, Gesk S, et al. Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am J Hum Genet 2010;86:279-84.
85. Hirota S, Isozaki K, Moriyama Y, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998;279:577-80.
86. Ponti G, Luppi G, Martorana D, et al. Gastrointestinal stromal tumor and other primary metachronous or synchronous neoplasms as a suspicion criterion for syndromic setting. Oncol Rep 2010;23:437-44.
87. Postow MA, Robson ME. Inherited gastrointestinal stromal tumor syndromes: mutations, clinical features, and therapeutic implications. Clin Sarcoma Res 2012;2:16.
88. Nishida T, Hirota S, Taniguchi M, et al. Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nat Genet 1998;19:323-4.
89. Isozaki K, Terris B, Belghiti J, Schiffmann S, Hirota S, Vanderwinden J. Germline-Activating mutation in the kinase domain of KIT gene in familial gastrointestinal stromal tumors. Am J Pathol 2000;157:1581-5.
90. Hirota S, Nishida T, Isozaki K, et al. Familial gastrointestinal stromal tumors associated with dysphagia and novel type germline mutation of KIT gene. Gastroenterology 2002;122:1493-9.
91. Chompret A, Kannengiesser C, Barrois M, et al. PDGFRA germline mutation in a family with multiple cases of gastrointestinal stromal tumor. Gastroenterology 2004;126:318-21.
92. Janeway KA, Kim SY, Lodish M, et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci USA 2011;108:314-8.
93. Miettinen M, Wang Z-F, Sarlomo-Rikala M, et al. Succinate dehydrogenase deficient gists-a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric gists with predilection to young age. Am J Surg Pathol 2011;35:1712.
94. Oudijk L, Gaal J, Korpershoek E, et al. SDHA mutations in adult and pediatric wild-type gastrointestinal stromal tumors. Mod Pathol 2013;26:456-63.
95. Boikos SA, Pappo AS, Killian JK, et al. Molecular subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors: a report from the national institutes of health gastrointestinal stromal tumor clinic. JAMA Oncol 2016;2:922-8.