REFERENCES
1. Afify SM, Sanchez Calle A, Hassan G, et al. A novel model of liver cancer stem cells developed from induced pluripotent stem cells. Br J Cancer 2020;122:1378-90.
2. Liu YM, Li XF, Liu H, Wu XL. Ultrasound-targeted microbubble destruction-mediated downregulation of CD133 inhibits epithelial-mesenchymal transition, stemness and migratory ability of liver cancer stem cells. Oncol Rep 2015;34:2977-86.
3. Castelli G, Pelosi E, Testa U. Liver cancer: molecular characterization, clonal evolution and cancer stem cells. Cancers 2017;9:127.
4. Marzio N, Eglin D, Serra T, Moroni L. Bio-fabrication: convergence of 3D bioprinting and nano-biomaterials in tissue engineering and regenerative medicine. Front Bioeng Biotechnol 2020;8:326.
5. Kahl M, Gertig M, Hoyer P, Friedrich O, Gilbert DF. Ultra-low-cost 3D bioprinting: modification and application of an off-the-shelf desktop 3d-printer for biofabrication. Front Bioeng Biotechnol 2019;7:184.
6. Moroni L, Boland T, Burdick JA, et al. Biofabrication: a guide to technology and terminology. Trends Biotechnol 2018;36:384-402.
7. Cenik M, Abas BI, Kocabiyik B, Demirbolat GM, Cevik O. Development of a new drug delivery system from hela-derived exosomes and the effect of docetaxel-loaded exosomes on mitochondrial apoptosis. J Pharm Innov 2021;17:931-9.
8. Gumus E, Abas BI, Cevik E, Kocabiyik B, Cenik M, Cevik O. Alginate encapsulation induce colony formation with umbilical cord-derived mesenchymal stem cells. Biomed Res 2021;4:113-21.
9. Galateanu B, Dimonie D, Vasile E, Nae S, Cimpean A, Costache M. Layer-shaped alginate hydrogels enhance the biological performance of human adipose-derived stem cells. BMC Biotechnol 2012;12:35.
10. Chen Z, Xie H, Hu M, Huang T, Hu Y, Sang N, Zhao Y. Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res 2020;10:2993.
11. Vos P, Lazarjani HA, Poncelet D, Faas MM. Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev 2014;67-68:15-34.
12. Bhujbal SV, Paredes-Juarez GA, Niclou SP, de Vos P. Factors influencing the mechanical stability of alginate beads applicable for immunoisolation of mammalian cells. J Mech Behav Biomed Mater 2014;37:196-208.
13. Kummerfeld G, Nair A, Ko S, et al. Alginate composition, temperature, and presence of islet tissue influence microcapsule permeability. In: 10th World Biomaterials Congress, Montréal, Canada, 17-22 May 2016.
14. Hazur J, Detsch R, Karakaya E, et al. Improving alginate printability for biofabrication: establishment of a universal and homogeneous pre-crosslinking technique. Biofabrication 2020;12:045004.
15. Hajifathaliha F, Mahboubi A, Nematollahi L, Mohit E, Bolourchian N. Comparison of different cationic polymers efficacy in fabrication of alginate multilayer microcapsules. Asian J Pharm Sci 2020;15:95-103.
16. Davoudi F, Ghorbanpoor S, Yoda S, et al. Alginate-based 3D cancer cell culture for therapeutic response modeling. STAR Protoc 2021;2:100391.
17. Svanström A, Rosendahl J, Salerno S, et al. Optimized alginate-based 3D printed scaffolds as a model of patient derived breast cancer microenvironments in drug discovery. Biomed Mater 2021;16:045046.
18. Lan SF, Starly B. Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities. Toxicol Appl Pharmacol 2011;256:62-72.
19. Pang Y, Mao SS, Yao R, et al. TGF-β induced epithelial-mesenchymal transition in an advanced cervical tumor model by 3D printing. Biofabrication 2018;10:044102.
20. DelNero P, Lane M, Verbridge SS, et al. 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways. Biomaterials 2015;55:110-8.