REFERENCES
1. International Agency for Research on Cancer (IARC). Monographs on the evaluation of carcinogenic risks to humans - benzene volume 120. 2018. Available from: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Benzene-2018 [Last accessed on 17 May 2022].
2. International Agency for Research on Cancer (IARC). Agents classified by the IARC monographs, volumes 1–129. Available from: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ [Last accessed on 17 May 2022].
3. The National Institute for Occupational Safety and Health (NIOSH). Carcinogenic effects of exposure to diesel exhaust. 1988. Available from: https://www.cdc.gov/niosh/docs/88-116/default.html [Last accessed on 17 May 2022].
4. International Agency for Research on Cancer (IARC). Diesel and gasoline engine exhausts and some nitroarenes. 2014. Available from: https://publications.iarc.fr/129 [Last accessed on 17 May 2022].
5. Houot MT, Homère J, Goulard H, Garras L, Delabre L, Pilorget C. Lifetime occupational exposure proportion estimation methods: a sensitivity analysis in the general population. Int Arch Occup Environ Health 2021;94:1537-47.
6. International Agency for Research on Cancer (IARC). 2020. Available from: https://monographs.iarc.who.int/wp-content/uploads/2019/07/Classifications_by_cancer_site.pdf [Last accessed on 17 May 2022].
7. Angelini S, Maffei F, Bermejo JL, et al. Environmental exposure to benzene, micronucleus formation and polymorphisms in DNA-repair genes: a pilot study. Mutat Res 2012;743:99-104.
8. Silva CB, Mota CL, Almeida YR, et al. Environmental exposure to benzene: evaluation of urinary S-PMA and polymorphism (CYP2E1-1293G>C and NQO1 609C>T) in Campos Elíseos residents, Duque de Caxias, Rio de Janeiro State, Brazil. Cad Saude Publica 2019;35:e00198618.
9. Smith MT, Guyton KZ, Gibbons CF, et al. Key Characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ Health Perspect 2016;124:713-21.
11. Lan Q, Zhang L, Li G, et al. Hematotoxicity in workers exposed to low levels of benzene. Science 2004;306:1774-6.
12. Getu S, Shiferaw E, Melku M. Assessment of hematological parameters of petrol filling workers at petrol stations in Gondar town, Northwest Ethiopia: a comparative cross-sectional study. Environ Health Prev Med 2020;25:44.
13. Abou-ElWafa HS, Albadry AA, El-Gilany AH, Bazeed FB. Some biochemical and hematological parameters among petrol station attendants: a comparative study. Biomed Res Int 2015;2015:418724.
14. Melo K, Santiago F, Lucena SBG et al. Aplastic anemia, clinical implications and DNA damage in workers with occupational exposure to aromatic hydrocarbons in Rio de Janeiro. Res Results Biomed 2020;6:308-17.
16. Santiago F, Lima S, Pinheiro T, et al. Benzene poisoning, clinical and blood abnormalities in two Brazilian female gas station attendants: two case reports. BMC Res Notes 2017;10:52.
17. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol 2008;9:503-10.
18. Brandão MM, Rêgo MA, Pugliese L, et al. Phenotype analysis of lymphocytes of workers with chronic benzene poisoning. Immunol Lett 2005;101:65-70.
19. Biró A, Pállinger É, Major J, et al. Lymphocyte phenotype analysis and chromosome aberration frequency of workers occupationally exposed to styrene, benzene, polycyclic aromatic hydrocarbons or mixed solvents. Immunol Lett 2002;81:133-40.
20. Moro AM, Sauer E, Brucker N, et al. Evaluation of immunological, inflammatory, and oxidative stress biomarkers in gasoline station attendants. BMC Pharmacol Toxicol 2019;20:75.
21. Silvestre RT, Delmonico L, Bravo M, et al. Health survey and assessment of the polymorphisms BRCA1/P871L, BRCA1/Q356R, and BRCA2/N372H in female gas station workers in Rio de Janeiro. Environ Mol Mutagen 2017;58:730-4.
22. Zhang L, Eastmond DA, Smith MT. The nature of chromosomal aberrations detected in humans exposed to benzene. Crit Rev Toxicol 2002;32:1-42.
23. Chandirasekar R, Kumar BL, Sasikala K, et al. Assessment of genotoxic and molecular mechanisms of cancer risk in smoking and smokeless tobacco users. Mutat Res Genet Toxicol Environ Mutagen 2014;767:21-7.
24. Lovreglio P, Maffei F, Carrieri M, et al. Evaluation of chromosome aberration and micronucleus frequencies in blood lymphocytes of workers exposed to low concentrations of benzene. Mutat Res Genet Toxicol Environ Mutagen 2014;770:55-60.
25. Mohandas N. Structure and composition of the erythrocyte. In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Oliver WP, Burns LJ, Caligiuri, editors. Williams Hematology. 9th edition. New York: Mcgraw Hill, 2016; pp. 467-68.
26. Celik A, Cavaş T, Ergene-Gözükara S. Cytogenetic biomonitoring in petrol station attendants: micronucleus test in exfoliated buccal cells. Mutagenesis 2003;18:417-21.
27. Singaraju M, Singaraju S, Parwani R, Wanjari S. Cytogenetic biomonitoring in petrol station attendants: A micronucleus study. J Cytol 2012;29:1-5.
28. Shaikh A, Barot D, Chandel D. Genotoxic Effects of exposure to gasoline fumes on petrol pump workers. Int J Occup Environ Med 2018;9:79-87.
29. Filho APR, Silveira MAD, do Nascimento CB, d'Arce LPG. Integrative study of cell damage and cancer risk in gas station attendants. Int J Environ Health Res 2018;28:1-7.
30. Costa-Amaral IC, Carvalho LVB, Santos MVC, et al. Environmental assessment and evaluation of oxidative stress and genotoxicity biomarkers related to chronic occupational exposure to benzene. Int J Environ Res Public Health 2019;16:2240.
31. Gaikwad AS, Mahmood R, Beerappa R, Karunamoorthy P, Venugopal D. Mitochondrial DNA copy number and cytogenetic damage among fuel filling station attendants. Environ Mol Mutagen 2020;61:820-9.
32. Mrdjanović J, Šolajić S, Dimitrijević S, Đan I, Nikolić I, Jurišić V. Assessment of micronuclei and sister chromatid exchange frequency in the petroleum industry workers in province of Vojvodina, Republic of Serbia. Food Chem Toxicol 2014;69:63-8.
33. Wang TS, Tian W, Fang Y, et al. Changes in miR-222 expression, DNA repair capacity, and MDM2-p53 axis in association with low-dose benzene genotoxicity and hematotoxicity. Sci Total Environ 2021;765:142740.
34. Ostling O, Johanson K. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophysci Res Commun 1984;123:291-8.
35. Collins AR. The Comet Assay for DNA Damage and repair: principles, applications, and limitations. Mol Biotechnol 2004;26:249-61.
36. Rossner P, Boffetta P, Ceppi M, et al. Chromosomal aberrations in lymphocytes of healthy subjects and risk of cancer. Environ Health Perspect 2005;113:517-20.
37. Smerhovsky Z, Landa K, Rössner P, et al. Risk of cancer in an occupationally exposed cohort with increased level of chromosomal aberrations. Environ Health Perspect 2001;109:41-5.
38. Gonçalves RO, de Almeida Melo N, Rêgo MA. Association between occupational exposure to benzene and chromosomal alterations in lymphocytes of Brazilian petrochemical workers removed from exposure. Environ Monit Assess 2016;188:334.
39. Villalba-Campos M, Chuaire-Noack L, Sánchez-Corredor MC, Rondón-Lagos M. High chromosomal instability in workers occupationally exposed to solvents and paint removers. Mol Cytogenet 2016;9:46.
40. Verdorfer I, Neubauer S, Letzel S, et al. Chromosome painting for cytogenetic monitoring of occupationally exposed and non-exposed groups of human individuals. Mut Res/Gene Toxicol Environ Mutagene 2001;491:97-109.
41. Zhang L, Lan Q, Guo W, et al. Use of OctoChrome fluorescence in situ hybridization to detect specific aneuploidy among all 24 chromosomes in benzene-exposed workers. Chem Biol Interact 2005;153-154:117-22.
42. Holeckova B, Piesova E, Sivikova K, Dianovsky J. FISH detection of chromosome 1 aberration in human interphase and metaphase lymphocytes after exposure to benzene. Ann Agric Environ Med 2008;15:99-103.
43. Zhang L, Lan Q, Guo W, et al. Chromosome-wide aneuploidy study (CWAS) in workers exposed to an established leukemogen, benzene. Carcinogenesis 2011;32:605-12.
44. Ji Z, Zhang L. Chromosomics: detection of numerical and structural alterations in all 24 human chromosomes simultaneously using a novel OctoChrome FISH assay. J Vis Exp ;2012:3619.
45. Santiago F, Alves G, Otero UB, et al. Monitoring of gas station attendants exposure to benzene, toluene, xylene (BTX) using three-color chromosome painting. Mol Cytogenet 2014;7:15.
46. Santiago F, Silvestre RT, Otero UB, et al. The association of three DNA repair genes polymorphisms on the frequency of chromosomal alterations detected by fluorescence in situ hybridization. Int Arch Occup Environ Health 2021;94:1567-77.
47. Liehr T, Claussen U. FISH-technology. lab manual. FISH on chromosome preparations of peripheral blood, Berlin: Springer, 2002. pp. 73–81.
48. Liehr T, Kosyakova N. Part IV Multicolor-FISH-Probe sets (MFISH) and immunostaining - multiplex FISH and spectral karyotyping. In: Liehr T, editor, Fluorescence in situ Hybridization (FISH), 2th edition, Berlin: Springer, 2017, pp. 233-39.
49. Vorsanova SG, Yurov YB, Iourov IY. Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogenet 2010;3:1.
50. Iourov IY, Vorsanova SG, Yurov YB. In silico molecular cytogenetics: a bioinformatic approach to prioritization of candidate genes and copy number variations for basic and clinical genome research. Mol Cytogenet 2014;7:98.
51. Wolff S, Perry P. Differential Giemsa staining of sister chromatids and the study of chromatid exchanges without autoradiography. Chromosoma 1974;48:341-53.
52. Goto K, Maeda S, Kano Y, Sugiyama T. Factors involved in differential Giemsa-staining of sister chromatids. Chromosoma 1978;66:351-9.
53. Li K, Jing Y, Yang C, et al. Increased leukemia-associated gene expression in benzene-exposed workers. Sci Rep 2014;4:5369.
54. Fustinoni S, Consonni D, Campo L, et al. Monitoring low benzene exposure: comparative evaluation of urinary biomarkers, influence of cigarette smoking, and genetic polymorphisms. Cancer Epidemiol Biomarkers Prev 2005;14:2237-44.
55. Bruckner JV, Anaud SS, Warren AD. Toxic effects of solvents and vapors, chapter 24. In: Casarett and Doul´s Toxicology, the basic science of poisons, 7th edition. New York: McGraw-Hill, 2008; pp. 1008-1009.
56. Zhang L, Ye FL, Chen T, Mei Y, Song SZ. Trans, trans-muconic acid as a biomarker of occupational exposure to high-level benzene in China. J Occup Environ Med 2011;53:1194-8.
57. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996;93:9821-6.
58. Silvestre RT, Bravo M, Santiago F, et al. Hypermethylation in gene promoters are induced by chronic exposure to benzene, toluene, ethylbenzene and xylenes. Pak J Biol Sci 2020;23:518-25.
59. Bollati V, Baccarelli A, Hou L, et al. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 2007;67:876-80.
60. Peluso M, Bollati V, Munnia A, et al. DNA methylation differences in exposed workers and nearby residents of the Ma Ta Phut industrial estate, Rayong, Thailand. Int J Epidemiol 2012;41:1753-60; discussion 1761.
61. Byun HM, Motta V, Panni T, et al. Evolutionary age of repetitive element subfamilies and sensitivity of DNA methylation to airborne pollutants. Part Fibre Toxicol 2013;10:28.
62. Filograna R, Mennuni M, Alsina D, Larsson NG. Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett 2021;595:976-1002.
63. Shen M, Zhang L, Bonner MR, et al. Association between mitochondrial DNA copy number, blood cell counts, and occupational benzene exposure. Environ Mol Mutagen 2008;49:453-7.
64. Carugno M, Pesatori AC, Dioni L, et al. Increased mitochondrial DNA copy number in occupations associated with low-dose benzene exposure. Environ Health Perspect 2012;120:210-5.
65. Khan S, Jha A, Panda AC, Dixit A. Cancer-Associated circRNA-miRNA-mRNA Regulatory Networks: A Meta-Analysis. Front Mol Biosci 2021;8:671309.
66. Hu D, Peng X, Liu Y, et al. Overexpression of miR-221 in peripheral blood lymphocytes in petrol station attendants: A population based cross-sectional study in southern China. Chemosphere 2016;149:8-13.
67. Rosell R, Karachaliou N. Implications of blood-based T790M genotyping and beyond in epidermal growth factor Receptor-Mutant Non-Small-Cell Lung Cancer. J Clin Oncol 2016;34:3361-2.