REFERENCES

1. Smith-Bindman R, Kwan ML, Marlow EC, et al. Trends in use of medical imaging in US health care systems and in Ontario, Canada, 2000-2016. JAMA 2019;322:843-56.

2. O'Sullivan JW, Muntinga T, Grigg S, Ioannidis JPA. Prevalence and outcomes of incidental imaging findings: umbrella review. BMJ 2018;361:k2387.

3. WARBURG O. . On the origin of cancer cells. Science 1956;123:309-14.

4. Rosenbaum SJ, Lind T, Antoch G, Bockisch A. False-positive FDG PET uptake-the role of PET/CT. Eur Radiol 2006;16:1054-65.

5. Albano D, Treglia G, Giovanella L, Giubbini R, Bertagna F. Detection of thyroiditis on PET/CT imaging: a systematic review. Hormones (Athens) 2020;19:341-9.

6. Zhuang H, Alavi A. 18-fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin Nucl Med 2002;32:47-59.

7. Agress H Jr, Cooper BZ. Detection of clinically unexpected malignant and premalignant tumors with whole-body FDG PET: histopathologic comparison. Radiology 2004;230:417-22.

8. Ishimori T, Patel PV, Wahl RL. Detection of unexpected additional primary malignancies with PET/CT. J Nucl Med 2005;46:752-7.

9. Dong C, Hemminki K. Second primary neoplasms among 53 159 haematolymphoproliferative malignancy patients in Sweden, 1958-1996: a search for common mechanisms. Br J Cancer 2001;85:997-1005.

10. Ueno M, Muto T, Oya M, Ota H, Azekura K, Yamaguchi T. Multiple primary cancer: an experience at the Cancer Institute Hospital with special reference to colorectal cancer. Int J Clin Oncol 2003;8:162-7.

11. Kang KW, Kim SK, Kang HS, et al. Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for metastasis evaluation and cancer screening in healthy subjects. J Clin Endocrinol Metab 2003;88:4100-4.

12. Yang Z, Shi W, Zhu B, et al. Prevalence and risk of cancer of thyroid incidentaloma identified by fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography. J Otolaryngol Head Neck Surg 2012;41:327-33.

13. Brander A, Viikinkoski P, Nickels J, Kivisaari L. Thyroid gland: US screening in a random adult population. Radiology 1991;181:683-7.

14. Bartolotta TV, Midiri M, Runza G, et al. Incidentally discovered thyroid nodules: incidence, and greyscale and colour Doppler pattern in an adult population screened by real-time compound spatial sonography. Radiol Med 2006;111:989-98.

15. Moon JH, Hyun MK, Lee JY, et al. Prevalence of thyroid nodules and their associated clinical parameters: a large-scale, multicenter-based health checkup study. Korean J Intern Med 2018;33:753-62.

16. Choi JY, Lee KS, Kim HJ, et al. , Focal thyroid lesions incidentally identified by integrated 18F-FDG PET/CT: clinical significance and improved characterization. J Nucl Med 2006;47:609-15.

17. Kang HW, No JH, Chung JH, et al. Prevalence, clinical and ultrasonographic characteristics of thyroid incidentalomas. Thyroid 2004;14:29-33.

18. Nishimori H, Tabah R, Hickeson M, How J. Incidental thyroid "PETomas": clinical significance and novel description of the self-resolving variant of focal FDG-PET thyroid uptake. Can J Surg 2011;54:83-8.

19. Shetty SK, Maher MM, Hahn PF, Halpern EF, Aquino SL. Significance of incidental thyroid lesions detected on CT: correlation among CT, sonography, and pathology. AJR Am J Roentgenol 2006;187:1349-56.

20. Hosaka Y, Tawata M, Kurihara A, Ohtaka M, Endo T, Onaya T. The regulation of two distinct glucose transporter (GLUT1 and GLUT4) gene expressions in cultured rat thyroid cells by thyrotropin. Endocrinology 1992;131:159-65.

21. Gould GW, Thomas HM, Jess TJ, Bell GI. Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry 1991;30:5139-45.

22. Pattison DA, Hofman MS. Role of fluorodeoxyglucose PET/computed tomography in targeted radionuclide therapy for endocrine malignancies. PET Clin 2015;10:461-76.

23. Gasparre G, Porcelli AM, Bonora E, et al. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc Natl Acad Sci U S A 2007;104:9001-6.

24. Kim BH, Kim SJ, Kim K, et al. High metabolic tumor volume and total lesion glycolysis are associated with lateral lymph node metastasis in patients with incidentally detected thyroid carcinoma. Ann Nucl Med 2015;29:721-9.

25. Ceriani L, Milan L, Virili C, et al. Radiomics analysis of [18F]-Fluorodeoxyglucose-avid thyroid incidentalomas improves risk stratification and selection for clinical assessment. Thyroid 2021;31:88-95.

26. Gedberg N, Karmisholt J, Gade M, Fisker RV, Iyer V, Petersen LJ. The frequency of focal thyroid incidental findings and risk of malignancy detected by 18F-fluorodeoxyglucose positron emission tomography in an iodine deficient population. Diagnostics (Basel) 2018;8:46.

27. Hassan A, Riaz S, Zafar W. Fluorine-18 fluorodeoxyglucose avid thyroid incidentalomas on PET/CT scan in cancer patients: how sinister are they? Nucl Med Commun 2016;37:1069-73.

28. Even-Sapir E, Lerman H, Gutman M, et al. The presentation of malignant tumours and pre-malignant lesions incidentally found on PET-CT. Eur J Nucl Med Mol Imaging 2006;33:541-52.

29. Chun AR, Jo HM, Lee SH, et al. Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography. Endocrinol Metab (Seoul) 2015;30:71-7.

30. Lee S, Park T, Park S, et al. The clinical role of dual-time-point (18)F-FDG PET/CT in differential diagnosis of the thyroid incidentaloma. Nucl Med Mol Imaging 2014;48:121-9.

31. Soelberg KK, Bonnema SJ, Brix TH, Hegedüs L. Risk of malignancy in thyroid incidentalomas detected by 18F-fluorodeoxyglucose positron emission tomography: a systematic review. Thyroid 2012;22:918-25.

32. Pattison DA, Bozin M, Gorelik A, Hofman MS, Hicks RJ, Skandarajah A. 18F-FDG-avid thyroid incidentalomas: the importance of contextual interpretation. J Nucl Med 2018;59:749-55.

33. Brindle R, Mullan D, Yap BK, Gandhi A. Thyroid incidentalomas discovered on positron emission tomography CT scanning - malignancy rate and significance of standardised uptake values. Eur J Surg Oncol 2014;40:1528-32.

34. Karantanis D, Bogsrud TV, Wiseman GA, et al. Clinical significance of diffusely increased 18F-FDG uptake in the thyroid gland. J Nucl Med 2007;48:896-901.

35. Şencan Eren M, Özdoğan Ö, Gedik A, et al. The incidence of 18F-FDG PET/CT thyroid incidentalomas andthe prevalence of malignancy: a prospective study. Turk J Med Sci 2016;46:840-7.

36. Jamsek J, Zagar I, Gaberscek S, Grmek M. Thyroid lesions incidentally detected by (18)F-FDG PET-CT - a two centre retrospective study. Radiol Oncol 2015;49:121-7.

37. Salvatori M, Melis L, Castaldi P, et al. Clinical significance of focal and diffuse thyroid diseases identified by (18)F-fluorodeoxyglucose positron emission tomography. Biomed Pharmacother 2007;61:488-93.

38. Bae JS, Chae BJ, Park WC, et al. Incidental thyroid lesions detected by FDG-PET/CT: prevalence and risk of thyroid cancer. World J Surg Oncol 2009;7:63.

39. Katz SC, Shaha A. PET-associated incidental neoplasms of the thyroid. J Am Coll Surg 2008;207:259-64.

40. Beck T, Zhang N, Shah A, Khoncarly S, McHenry C, Jin J. Thyroid cancer identified after positron emission tomography (PET) shows aggressive histopathology. J Surg Res 2021;260:245-50.

41. Kim YH, Chang Y, Kim Y, et al. Diffusely increased 18F-FDG uptake in the thyroid gland and risk of thyroid dysfunction: a cohort study. J Clin Med 2019;8:443.

42. Ozderya A, Temizkan S, Gul AE, Ozugur S, Sargin M, Aydin K. Correlation of BRAF mutation and SUVmax levels in thyroid cancer patients incidentally detected in 18F-fluorodeoxyglucose positron emission tomography. Endocrine 2017;55:215-22.

43. Makis W, Ciarallo A. Thyroid incidentalomas on 18F-FDG PET/CT: clinical significance and controversies. Mol Imaging Radionucl Ther 2017;26:93-100.

44. Kang BJ, O JH, Baik JH, Jung SL, Park YH, Chung SK. Incidental thyroid uptake on F-18 FDG PET/CT: correlation with ultrasonography and pathology. Ann Nucl Med 2009;23:729-37.

45. Chen W, Parsons M, Torigian DA, Zhuang H, Alavi A. Evaluation of thyroid FDG uptake incidentally identified on FDG-PET/CT imaging. Nucl Med Commun 2009;30:240-4.

46. Kurata S, Ishibashi M, Hiromatsu Y, et al. Diffuse and diffuse-plus-focal uptake in the thyroid gland identified by using FDG-PET: prevalence of thyroid cancer and Hashimoto's thyroiditis. Ann Nucl Med 2007;21:325-30.

47. Nockel P, Millo C, Keutgen X, et al. The rate and clinical significance of incidental thyroid uptake as detected by gallium-68 DOTATATE positron emission tomography/computed tomography. Thyroid 2016;26:831-5.

48. Pagano L, Samà MT, Morani F, et al. Thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography with CT (FDG-PET/CT): clinical and pathological relevance. Clin Endocrinol (Oxf) 2011;75:528-34.

49. Bertagna F, Treglia G, Piccardo A, et al. F18-FDG-PET/CT thyroid incidentalomas: a wide retrospective analysis in three Italian centres on the significance of focal uptake and SUV value. Endocrine 2013;43:678-85.

50. Nilsson IL, Arnberg F, Zedenius J, Sundin A. Thyroid incidentaloma detected by fluorodeoxyglucose positron emission tomography/computed tomography: practical management algorithm. World J Surg 2011;35:2691-7.

51. Asmar A, Simonsen L, Bülow J, Asmar M. [Work-up of thyroid incidentalomas identified by (18)F-fluorodeoxyglucose PET/CT]. Ugeskr Laeger 2017;179:V12160893.

52. Yasuda S, Shohtsu A, Ide M, et al. Chronic thyroiditis: diffuse uptake of FDG at PET. Radiology 1998;207:775-8.

53. Cohen MS, Arslan N, Dehdashti F, et al. Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography. Surgery 2001;130:941-6.

54. Kim TY, Kim WB, Ryu JS, Gong G, Hong SJ, Shong YK. 18F-fluorodeoxyglucose uptake in thyroid from positron emission tomogram (PET) for evaluation in cancer patients: high prevalence of malignancy in thyroid PET incidentaloma. Laryngoscope 2005;115:1074-8.

55. Are C, Hsu JF, Schoder H, Shah JP, Larson SM, Shaha AR. FDG-PET detected thyroid incidentalomas: need for further investigation? Ann Surg Oncol 2007;14:239-47.

56. Hollowell JG, Staehling NW, Flanders WD, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab 2002;87:489-99.

57. Pruthi A, Choudhury PS, Gupta M, Taywade S. Does the intensity of diffuse thyroid gland uptake on F-18 fluorodeoxyglucose positron emission tomography/computed tomography scan predict the severity of hypothyroidism? Indian J Nucl Med 2015;30:16-20.

58. Kim SS, Kim SJ, Bae YT, et al. Factors associated with the development of new onset diffuse thyroid F18-fluorodeoxyglucose uptake after treatment of breast cancer in patients without a history of thyroid disease or thyroid dysfunction. Thyroid 2012;22:53-8.

59. Langer JE, Khan A, Nisenbaum HL, et al. Sonographic appearance of focal thyroiditis. AJR Am J Roentgenol 2001;176:751-4.

60. Hwang S, Shin DY, Kim EK, et al. Focal lymphocytic thyroiditis nodules share the features of papillary thyroid cancer on ultrasound. Yonsei Med J 2015;56:1338-44.

61. Thuillier P, Crouzeix G, Descourt R, Salaun PY, Abgral R. Progression of focal to diffuse thyroid uptake detected by 18F-FDG PET/CT: malignant metastatic disease or benign thyroiditis? Clin Nucl Med 2018;43:e310-1.

62. Poller DN, Megadmi H, Ward MJA, Trimboli P. Hürthle cells on fine-needle aspiration cytology are important for risk assessment of focally PET/CT FDG avid thyroid nodules. Cancers (Basel) 2020;12:3544.

63. Noone AM, Howlader N, Krapcho M, et al. SEER cancer statistics review, 1975-2015, National Cancer Institute. Bethesda, MD. Available from: https://seer.cancer.gov/csr/1975_2015/ [Last accessed on 3 Aug 2021].

64. Nayan S, Ramakrishna J, Gupta MK. The Proportion of malignancy in incidental thyroid lesions on 18-FDG PET study: a systematic review and meta-analysis. Otolaryngol Head Neck Surg 2014;151:190-200.

65. Millare GG, Kwon M, Edeiken-Monroe BS, Debnam JM. 18F-PET/CT imaging of metastasis to the thyroid gland: imaging findings and effect on patient management. J Solid Tumors 2017;7:7-13.

66. Mitchell JC, Grant F, Evenson AR, Parker JA, Hasselgren PO, Parangi S. Preoperative evaluation of thyroid nodules with 18FDG-PET/CT. Surgery 2005;138:1166-74; discussion 1174.

67. Boeckmann J, Bartel T, Siegel E, Bodenner D, Stack BC Jr. Can the pathology of a thyroid nodule be determined by positron emission tomography uptake? Otolaryngol Head Neck Surg 2012;146:906-12.

68. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48:932-45.

69. Aksu A, Karahan Şen NP, Acar E, Çapa Kaya G. Evaluating focal 18F-FDG uptake in thyroid gland with radiomics. Nucl Med Mol Imaging 2020;54:241-8.

70. Shi H, Yuan Z, Yuan Z, et al. Diagnostic value of volume-based fluorine-18-fluorodeoxyglucose PET/CT parameters for characterizing thyroid incidentaloma. Korean J Radiol 2018;19:342-51.

71. Kim BH, Kim SJ, Kim H, et al. Diagnostic value of metabolic tumor volume assessed by 18F-FDG PET/CT added to SUVmax for characterization of thyroid 18F-FDG incidentaloma. Nucl Med Commun 2013;34:868-76.

72. Sollini M, Cozzi L, Pepe G, et al. [18F]FDG-PET/CT texture analysis in thyroid incidentalomas: preliminary results. Eur J Hybrid Imaging 2017;1:3.

73. Bertagna F, Treglia G, Piccardo A, Giubbini R. Diagnostic and clinical significance of F-18-FDG-PET/CT thyroid incidentalomas. J Clin Endocrinol Metab 2012;97:3866-75.

74. Sager S, Vatankulu B, Sahin OE, et al. Clinical significance of standardized uptake values in thyroid incidentaloma discovered by F-18 fluorodeoxyglucose positron emission tomography/computed tomography. J Cancer Res Ther 2018;14:989-93.

75. Thuillier P, Bourhis D, Roudaut N, et al. Diagnostic Value of FDG PET-CT quantitative parameters and deauville-like 5 point-scale in predicting malignancy of focal thyroid incidentaloma. Front Med (Lausanne) 2019;6:24.

76. Ho TY, Liou MJ, Lin KJ, Yen TC. Prevalence and significance of thyroid uptake detected by 18F-FDG PET. Endocrine 2011;40:297-302.

77. Yang J, Kan Y, Ge BH, Yuan L, Li C, Zhao W. Diagnostic role of Gallium-68 DOTATOC and Gallium-68 DOTATATE PET in patients with neuroendocrine tumors: a meta-analysis. Acta Radiol 2014;55:389-98.

78. Druckenthaner M, Schwarzer C, Ensinger C, et al. Evidence for somatostatin receptor 2 in thyroid tissue. Regul Pept 2007;138:32-9.

79. Prasad V, Ambrosini V, Alavi A, Fanti S, Baum RP. PET/CT in neuroendocrine tumors: evaluation of receptor status and metabolism. PET Clin 2008;3:355-79.

80. Ambrosini V, Nanni C, Fanti S. The use of gallium-68 labeled somatostatin receptors in PET/CT imaging. PET Clin 2014;9:323-9.

81. Atkinson H, England JA, Rafferty A, et al. Somatostatin receptor expression in thyroid disease. Int J Exp Pathol 2013;94:226-9.

82. Kunikowska J, Matyskiel R, Zemczak A, et al. How often do we see incidental 68Ga-DOTATATE thyroid uptake in PET/CT in patients with neuroendocrine tumours? Endokrynol Pol 2015;66:231-6.

83. Kohlenberg JD, Panda A, Johnson GB, Castro MR. Radiologic and clinicopathologic characteristics of thyroid nodules with focal 68Ga-DOTATATE PET activity. Nucl Med Commun 2021;42:510-6.

84. Beukhof CM, Brabander T, van Nederveen FH, et al. Peptide receptor radionuclide therapy in patients with medullary thyroid carcinoma: predictors and pitfalls. BMC Cancer 2019;19:325.

85. Moore M, Panjwani S, Mathew R, et al. Well-differentiated thyroid cancer neovasculature expresses prostate-specific membrane antigen-a possible novel therapeutic target. Endocr Pathol 2017;28:339-44.

86. Verma P, Malhotra G, Agrawal R, Sonavane S, Meshram V, Asopa RV. Evidence of prostate-specific membrane antigen expression in metastatic differentiated thyroid cancer using 68Ga-PSMA-HBED-CC PET/CT. Clin Nucl Med 2018;43:e265-8.

87. Bertagna F, Albano D, Giovanella L, et al. 68Ga-PSMA PET thyroid incidentalomas. Hormones (Athens) 2019;18:145-9.

88. Gossili F, Petersen LJ, Zacho HD. The frequency of thyroid incidental findings and risk of malignancy detected by 68Ga-labeled prostate-specific membrane antigen PET/CT in prostate cancer. Hell J Nucl Med 2020;23:240-5.

89. Santhanam P, Cooper D. How should we approach incidental thyroid nodules with Gallium-68 Prostate-Specific Membrane Antigen (PSMA) positivity? Clin Thyroidol 2021;33:87-91.

90. Mertens K, Slaets D, Lambert B, Acou M, De Vos F, Goethals I. PET with (18)F-labelled choline-based tracers for tumour imaging: a review of the literature. Eur J Nucl Med Mol Imaging 2010;37:2188-93.

91. Treglia G, Giovannini E, Di Franco D, et al. The role of positron emission tomography using carbon-11 and fluorine-18 choline in tumors other than prostate cancer: a systematic review. Ann Nucl Med 2012;26:451-61.

92. Uslu-Beşli L, Sonmezoglu K, Teksoz S, et al. Performance of F-18 Fluorocholine PET/CT for detection of hyperfunctioning parathyroid tissue in patients with elevated parathyroid hormone levels and negative or discrepant results in conventional imaging. Korean J Radiol 2020;21:236-47.

93. Podo F. Tumour phospholipid metabolism. NMR Biomed 1999;12:413-39.

94. Ruiz-Esponda RL, Dean DS. Clinical significance of incidental thyroid uptake on 11Ccholine PET/CT. Endo Rev 2014:35.

95. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer 2005;12:245-62.

96. Elisei R, Ugolini C, Viola D, et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab 2008;93:3943-9.

97. Tufano RP, Teixeira GV, Bishop J, Carson KA, Xing M. BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: a systematic review and meta-analysis. Medicine (Baltimore) 2012;91:274-86.

98. Cuccurullo V, Di Stasio GD, Cascini GL. PET/CT in thyroid cancer - the importance of BRAF mutations. Nucl Med Rev Cent East Eur 2020;23:97-102.

99. Pak K, Suh S, Kim SJ, Kim IJ. Prognostic value of genetic mutations in thyroid cancer: a meta-analysis. Thyroid 2015;25:63-70.

100. Wang F, Zhao S, Shen X, et al. BRAF V600E confers male sex disease-specific mortality risk in patients with papillary thyroid cancer. J Clin Oncol 2018;36:2787-95.

101. Shen X, Zhu G, Liu R, et al. Patient age-associated mortality risk is differentiated by BRAF V600E status in papillary thyroid cancer. J Clin Oncol 2018;36:438-45.

102. Durante C, Puxeddu E, Ferretti E, et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab 2007;92:2840-3.

103. Chang JW, Park KW, Heo JH, et al. Relationship between 18F-fluorodeoxyglucose accumulation and the BRAF V600E mutation in papillary thyroid cancer. World J Surg 2018;42:114-22.

104. Choi EK, Chong A, Ha JM, Jung CK, O JH, Kim SH. Clinicopathological characteristics including BRAF V600E mutation status and PET/CT findings in papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2017;87:73-9.

105. Morani F, Pagano L, Prodam F, Aimaretti G, Isidoro C. Loss of expression of the oncosuppressor PTEN in thyroid incidentalomas associates with GLUT1 plasmamembrane expression. Panminerva Med 2012;54:59-63.

106. Morani F, Phadngam S, Follo C, et al. PTEN regulates plasma membrane expression of glucose transporter 1 and glucose uptake in thyroid cancer cells. J Mol Endocrinol 2014;53:247-58.

107. Samih N, Hovsepian S, Aouani A, Lombardo D, Fayet G. Glut-1 translocation in FRTL-5 thyroid cells: role of phosphatidylinositol 3-kinase and N-glycosylation. Endocrinology 2000;141:4146-55.

108. Matsuzu K, Segade F, Wong M, Clark OH, Perrier ND, Bowden DW. Glucose transporters in the thyroid. Thyroid 2005;15:545-50.

109. Matsuzu K, Segade F, Matsuzu U, Carter A, Bowden DW, Perrier ND. Differential expression of glucose transporters in normal and pathologic thyroid tissue. Thyroid 2004;14:806-12.

110. Kim BH, Kim IJ, Kim SS, Kim SJ, Lee CH, Kim YK. Relationship between biological marker expression and fluorine-18 fluorodeoxyglucose uptake in incidentally detected thyroid cancer. Cancer Biother Radiopharm 2010;25:309-15.

111. Ohba K, Sasaki S, Oki Y, et al. Factors associated with fluorine-18-fluorodeoxyglucose uptake in benign thyroid nodules. Endocr J 2013;60:985-90.

112. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 2002;19:607-14.

113. Ghanem M, Levy Y, Mazeh H. Preoperative diagnosis of benign thyroid nodules with intermediate cytology. Gland Surg 2012;1:89-91.

114. Alexander EK, Schorr M, Klopper J, et al. Multicenter clinical experience with the afirma gene expression classifier. J Clin Endocrinol Metab 2014;99:119-25.

115. Nikiforov YE, Carty SE, Chiosea SI, et al. Impact of the multi-gene ThyroSeq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid 2015;25:1217-23.

116. Steward DL, Carty SE, Sippel RS, et al. Performance of a multigene genomic classifier in thyroid nodules with indeterminate cytology: a prospective blinded multicenter study. JAMA Oncol 2019;5:204-12.

117. Labourier E, Shifrin A, Busseniers AE, et al. Molecular testing for miRNA, mRNA, and DNA on fine-needle aspiration improves the preoperative diagnosis of thyroid nodules with indeterminate cytology. J Clin Endocrinol Metab 2015;100:2743-50.

118. Endo M, Sipos JA, Ringel MD, et al. Prevalence of cancer and the benign call rate of afirma gene classifier in 18F-Fluorodeoxyglucose positron emission tomography positive cytologically indeterminate thyroid nodules. Cancer Med 2021;10:1084-90.

119. Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26:1-133.

120. NCCN Clinical practice guidelines in oncology: thyroid carcinoma 2020. Available from: https://www.nccn.org/professionals/physician_gls/pdf/thyroid.pdf [Last accessed on 3 Aug 2021].

121. Amin F, Byrd DR, Brookland PK, et al. . AJCC cancer staging manual. 8th ed. New York: Springer International Publishing, 2017.

122. Ito Y, Miyauchi A, Oda H. Low-risk papillary microcarcinoma of the thyroid: a review of active surveillance trials. Eur J Surg Oncol 2018;44:307-15.

123. Nguyen XV, Job J, Fiorillo LE, Sipos J. Thyroid incidentalomas: practice considerations for radiologists in the age of incidental findings. Radiol Clin North Am 2020;58:1019-31.

124. Mazzaferri EL. Long-term outcome of patients with differentiated thyroid carcinoma: effect of therapy. Endocr Pract 2000;6:469-76.

125. Grebe SK, Hay ID. Thyroid cancer nodal metastases: biologic significance and therapeutic considerations. Surg Oncol Clin N Am 1996;5:43-63.

126. Kim TY, Kim WG, Kim WB, Shong YK. Current status and future perspectives in differentiated thyroid cancer. Endocrinol Metab (Seoul) 2014;29:217-25.

127. Stack BC Jr, Ferris RL, Goldenberg D, et al. American Thyroid Association Surgical Affairs Committee. American Thyroid Association consensus review and statement regarding the anatomy, terminology, and rationale for lateral neck dissection in differentiated thyroid cancer. Thyroid 2012;22:501-8.

128. Angell TE, Maurer R, Wang Z, et al. A cohort analysis of clinical and ultrasound variables predicting cancer risk in 20,001 consecutive thyroid nodules. J Clin Endocrinol Metab 2019;104:5665-72.

129. Frates MC, Benson CB, Doubilet PM, et al. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J Clin Endocrinol Metab 2006;91:3411-7.

130. Sklar C, Whitton J, Mertens A, et al. Abnormalities of the thyroid in survivors of Hodgkin's disease: data from the Childhood Cancer Survivor Study. J Clin Endocrinol Metab 2000;85:3227-32.

131. Schneider AB, Ron E, Lubin J, Stovall M, Gierlowski TC. Dose-response relationships for radiation-induced thyroid cancer and thyroid nodules: evidence for the prolonged effects of radiation on the thyroid. J Clin Endocrinol Metab 1993;77:362-9.

132. Charkes ND. On the prevalence of familial nonmedullary thyroid cancer in multiply affected kindreds. Thyroid 2006;16:181-6.

133. Nguyen XV, Roy Choudhury K, Tessler FN, Hoang JK. Effect of tumor size on risk of metastatic disease and survival for thyroid cancer: implications for biopsy guidelines. Thyroid 2018;28:295-300.

134. Smith-Bindman R, Lebda P, Feldstein VA, et al. Risk of thyroid cancer based on thyroid ultrasound imaging characteristics: results of a population-based study. JAMA Intern Med 2013;173:1788-96.

135. Middleton WD, Teefey SA, Reading CC, et al. Multiinstitutional analysis of thyroid nodule risk stratification using the American college of radiology thyroid imaging reporting and data system. AJR Am J Roentgenol 2017;208:1331-41.

136. Trimboli P, Paone G, Treglia G, et al. Fine-needle aspiration in all thyroid incidentalomas at 18F-FDG PET/CT: Can EU-TIRADS revise the dogma? Clin Endocrinol (Oxf) 2018;89:642-8.

137. Trimboli P, Knappe L, Treglia G, et al. FNA indication according to ACR-TIRADS, EU-TIRADS and K-TIRADS in thyroid incidentalomas at 18F-FDG PET/CT. J Endocrinol Invest 2020;43:1607-12.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/