REFERENCES
1. Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ 2005;12 Suppl 2:1542-52.
4. Amaravadi R, Kimmelman AC, White E. Recent insights into the function of autophagy in cancer. Genes Dev 2016;30:1913-30.
5. Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 2018;19:349-64.
6. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009;136:521-34.
7. Dong JY, Qin LQ. Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res Treat 2011;125:315-23.
8. Liu X, Lv K. Cruciferous vegetables intake is inversely associated with risk of breast cancer: a meta-analysis. Breast 2013;22:309-13.
9. Li Y, Li S, Meng X, Gan RY, Zhang JJ, et al. Dietary natural products for prevention and treatment of breast cancer. Nutrients 2017;9:728.
10. Moosavi MA, Haghi A, Rahmati M, Taniguchi H, Mocan A, et al. Phytochemicals as potent modulators of autophagy for cancer therapy. Cancer Lett 2018;424:46-69.
11. Deng S, Shanmugam MK, Kumar AP, Yap CT, Sethi G, et al. Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer 2019;125:1228-46.
12. Patra S, Mishra SR, Behera BP, Mahapatra KK, Panigrahi DP, et al. Autophagy-modulating phytochemicals in cancer therapeutics: current evidences and future perspectives. Semin Cancer Biol 2020; doi: 10.1016/j.semcancer.2020.05.008.
13. Gupta P, Wright SE, Kim SH, Srivastava SK. Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms. Biochim Biophys Acta 2014;1846:405-24.
14. Yu C, Gong AY, Chen D, Solelo Leon D, Young CY, et al. Phenethyl isothiocyanate inhibits androgen receptor-regulated transcriptional activity in prostate cancer cells through suppressing PCAF. Mol Nutr Food Res 2013;57:1825-33.
15. Horoszewics JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, et al. LNCaP model of human prostatic carcinoma. Cancer Res 1983;43:1809-18.
16. Pustylnikov S, Costabile F, Beghi S, Facciabene A. Targeting mitochondria in cancer: current concepts and immunotherapy approaches. Transl Res 2018;202:35-51.
17. Bommareddy A, Hahm ER, Xiao D, Powolny AA, Fisher AL, et al. Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells. Cancer Res 2009;69:3704-12.
18. Powolny AA, Bommareddy A, Hahm ER, Normolle DP, Beumer JH, et al. Chemopreventative potential of the cruciferous vegetable constituent phenethyl isothiocyanate in a mouse model of prostate cancer. J Natl Cancer Inst 2011;103:571-84.
19. Xue C, Pasolli HA, Piscopo I, Gros DJ, Liu C, et al. Mitochondrial structure alteration in human prostate cancer cells upon initial interaction with a chemopreventive agent phenethyl isothiocyanate. Cancer Cell Int 2014;14:30.
20. Xiao D, Powolny AA, Moura MB, Kelley EE, Bommareddy A, et al. Phenethyl isothiocyanate inhibits oxidative phosphorylation to trigger reactive oxygen species-mediated death of human prostate cancer cells. J Biol Chem 2010;285:26558-69.
21. Akins NS, Nielson TC, Le HV. Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer. Curr Top Med Chem 2018;18:494-504.
23. Singh KB, Hahm ER, Rigatti LH, Normolle DP, Yuan JM, et al. Inhibition of glycolysis in prostate cancer chemoprevention by phenethyl isothiocyanate. Cancer Prev Res 2018;11:337-46.
24. Milane L, Duan Z, Amiji M. Role of hypoxia and glycolysis in the development of multi-drug resistance in human tumor cells and the establishment of an orthotopic multi-drug resistant tumor model in nude mice using hypoxic pre-conditioning. Cancer Cell Int 2011;11:3.
25. Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 2015;3:83-92.
26. Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem 2016;31:177-83.
27. Li H, Qiu Z, Li F, Wang C. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol Lett 2017;14:5865-70.
28. Yang F, Yu N, Wang H, Zhang C, Zhang Z, et al. Downregulated expression of hepatoma-derived growth factor inhibits migration and invasion of prostate cancer cells by suppressing epithelial-mesenchymal transition and MMP2, MMP9. PLoS One 2018;13:e0190725.
29. Wang H, Wang L, Cao L, Zhang Q, Song Q, et al. Inhibition of autophagy potentiates the anti-metastasis effect of phenethyl isothiocyanate through JAK2/STAT3 pathway in lung cancer cells. Mol Carcinog 2018;57:522-35.
30. Zhang C, Shu L, Kim H, Khor TO, Wu R, et al. Phenethyl isothiocyanate (PEITC) suppresses prostate cancer cell invasion epigenetically through regulating microRNA-194. Mol Nutr Food Res 2016;60:1427-36.
31. O’Neill J, Brock C, Olesen AE, Andresen T, Nilsson M, et al. Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol Rev 2012;64:939-71.
32. Wang Y, Deng X, Yu C, Zhao G, Zhou J, et al. Synergistic inhibitory effects of capsaicin combined with cisplatin on human osteosarcoma in culture and in xenografts. J Exp Clin Cancer Res 2018;37:251.
33. Hong ZF, Zhao WX, Yin ZY, Xie CR, Xu YP, et al. Capsaicin enhances the drug sensitivity of cholangiocarcinoma through the inhibition of chemotherapeutic-induced autophagy. PLoS One 2015;10:e0121538.
34. Garufi A, Pistritto G, Cirone M, D’Orazi G. Reactivation of mutant p53 by capsaicin, the major constituent of peppers. J Exp Clin Cancer Res 2016;35:136.
35. Yoon JH, Ahn SG, Lee BH, Jung SH, Oh SH. Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1. Biochem Pharmacol 2012;83:747-57.
36. Liu YP, Dong FX, Chai X, Zhu S, Zhang BL, et al. Role of autophagy in capsaicin-induced apoptosis in U251 glioma cells. Cell Mol Neurobiol 2016;36:737-43.
37. Chen X, Tan M, Xie Z, Feng B, Zhao Z, et al. Inhibiting ROS-STAT3-dependent autophagy enhanced capsaicin-induced apoptosis in human hepatocellular carcinoma cells. Free Radic Res 2016;50:744-55.
38. Chu H, Li M, Wang X. Capsaicin induces apoptosis and autophagy in human melanoma cells. Oncol Lett 2019;17:4827-34.
39. Amantini C, Morelli MB, Nabissi M, Cardinali C, Santoni M, et al. Capsaicin triggers autophagic cell survival which drives epithelial mesenchymal transition and chemoresistance in bladder cancer cells in an Hedgehog-dependent manner. Oncotarget 2016;7:50180-94.
40. Oh SH, Kim YS, Lim SC, Hou YF, Chang IY, et al. Dihydrocapsaicin (DHC), a saturated structural analog of capsaicin, induces autophagy in human cancer cells in a catalase-regulated manner. Autophagy 2008;4:1009-19.
41. Ramos-Torres Á, Bort A, Morell C, Rodríguez-Henche N, Díaz-Laviada I. The pepper’s natural ingredient capsaicin induces autophagy blockage in prostate cancer cells. Oncotarget 2016;7:1569-83.
42. Lin YT, Wang HC, Hsu YC, Cho CL, Yang MY, et al. Capsaicin induces autophagy and apoptosis in human nasopharyngeal carcinoma cells by downregulating the PI3K/AKT/mTOR Pathway. Int J Mol Sci 2017;18:1343.
43. Kakar SS, Jala VR, Fong MY. Synergistic cytotoxic action of cisplatin and withaferin A on ovarian cancer cell lines. Biochem Biophys Res Commun 2012;423:819-25.
44. Hsu JH, Chang PM, Cheng TS, Kuo YL, Wu AT, et al. Identification of Withaferin A as a potential candidate for anti-cancer therapy in non-small cell lung cancer. Cancers (Basel) 2019;11:1003.
45. Fong MY, Jin S, Rane M, Singh RK, Gupta R, et al. Withaferin A synergizes the therapeutic effect of doxorubicin through ROS-mediated autophagy in ovarian cancer. PLoS One 2012;7:e42265.
46. Alnuqaydan A, Rah B, Almutary A, Chauhan S. Synergistic antitumor effect of 5-fluorouracil and withaferin-A induced endoplasmic reticulum stress-mediated autophagy and apoptosis in colorectal cancer cells. Am J Cancer Res 2020;10:799-815.
47. Ghosh K, De S, Das S, Mukherjee S, Sengupta Bandyopadhyay S. Withaferin A induces ROS-mediated paraptosis in human breast cancer cell-lines MCF-7 and MDA-MB-231. PLoS One 2016;11:e0168488.
48. Liu X, Li Y, Ma Q, Wang Y, Song AL. Withaferin-A inhibits growth of drug-resistant breast carcinoma by inducing apoptosis and autophagy, endogenous reactive oxygen species (ROS) production, and inhibition of cell migration and nuclear factor kappa B (Nf-κB)/mammalian target of rapamycin (m-TOR) signalling pathway. Med Sci Monit 2019;25:6855-63.
49. Ghosh K, De S, Mukherjee S, Das S, Ghosh AN, et al. Withaferin A induced impaired autophagy and unfolded protein response in human breast cancer cell-lines MCF-7 and MDA-MB-231. Toxicol In Vitro 2017;44:330-8.
50. Muniraj N, Siddharth S, Nagalingam A, Walker A, Woo J, et al. Withaferin A inhibits lysosomal activity to block autophagic flux and induces apoptosis via energetic impairment in breast cancer cells. Carcinogenesis 2019; doi: 10.1093/carcin/bgz015.
51. Okamoto S, Tsujioka T, Suemori S, Kida J, Kondo T, et al. Withaferin A suppresses the growth of myelodysplasia and leukemia cell lines by inhibiting cell cycle progression. Cancer Sci 2016;107:1302-14.
52. Li X, Zhu F, Jiang J, Sun C, Zhong Q, et al. Simultaneous inhibition of the ubiquitin-proteasome system and autophagy enhances apoptosis induced by ER stress aggravators in human pancreatic cancer cells. Autophagy 2016;12:1521-37.
53. Nishikawa Y, Okuzaki D, Fukushima K, Mukai S, Ohno S, et al. Withaferin A induces cell death selectively in androgen-independent prostate cancer cells but not in normal fibroblast cells. PLoS One 2015;10:e0134137.
54. Rah B, ur Rasool R, Nayak D, Yousuf SK, Mukherjee D, et al. PAWR-mediated suppression of BCL2 promotes switching of 3-azido withaferin A (3-AWA)-induced autophagy to apoptosis in prostate cancer cells. Autophagy 2015;11:314-31.
55. Vyas AR, Singh SV. Molecular targets and mechanisms of cancer prevention and treatment by withaferin a, a naturally occurring steroidal lactone. AAPS J 2014;16:1-10.
56. Hahm ER, Singh SV. Autophagy fails to alter withaferin A-mediated lethality in human breast cancer cells. Curr Cancer Drug Targets 2013;13:640-50.
57. Siddharth S, Muniraj N, Saxena NK, Sharma D. Concomitant inhibition of cytoprotective autophagy augments the efficacy of withaferin A in hepatocellular carcinoma. Cancers (Basel) 2019;11:453.
58. Spagnuolo C, Russo GL, Orhan IE, Habtemariam S, Daglia M, et al. Genistein and cancer: current status, challenges, and future directions. Adv Nutr 2015;6:408-19.
59. Singletary K, Milner J. Diet, Autophagy and cancer: a review. Cancer Epidemiol Biomarkers Prev 2008;17:1596-610.
60. Gossner G, Choi M, Tan L, Fogoros S, Griffith KA, et al. Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells. Gynecol Oncol 2007;105:23-30.
61. Nazim UM, Park SY. Genistein enhances TRAIL-induced cancer cell death via inactivation of autophagic flux. Oncol Rep 2015;34:2692-8.
62. Suzuki R, Kang Y, Li X, Roife D, Zhang R, et al. Genistein potentiates the antitumor effect of 5-Fluorouracil by inducing apoptosis and autophagy in human pancreatic cancer cells. Anticancer Res 2014;34:4685-92.
63. Prietsch RF, Monte LG, da Silva FA, Beira FT, Del Pino FA, et al. Genistein induces apoptosis and autophagy in human breast MCF-7 cells by modulating the expression of proapoptotic factors and oxidative stress enzymes. Mol Cell Biochem 2014;390:235-42.
64. Pons DG, Nadal-Serrano M, Torrens-Mas M, Oliver J, Roca P. The Phytoestrogen Genistein Affects Breast Cancer Cells Treatment Depending on the ERα/ERβ Ratio. J Cell Biochem 2016;117:218-29.
65. Zhang X, Cook KL, Warri A, Cruz IM, Rosim M, et al. Lifetime Genistein Intake Increases the Response of Mammary Tumors to Tamoxifen in Rats. Clin Cancer Res 2017;23:814-24.
66. Nakamura Y, Yogosawa S, Izutani Y, Watanabe H, Otsuji E, et al. A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol Cancer 2009;8:100.
67. Mohan N, Chakrabarti M, Banik NL, Ray SK. Combination of LC3 shRNA plasmid transfection and genistein treatment inhibited autophagy and increased apoptosis in malignant neuroblastoma in cell culture and animal models. PLoS One 2013;8:e78958.
68. Pool H, Campos-Vega R, Herrera-Hernández MG, García-Solis P, García-Gasca T, et al. Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells. Am J Transl Res 2018;10:2306-23.
69. Zhang Z, Jin F, Lian X, Li M, Wang G, et al. Genistein promotes ionizing radiation-induced cell death by reducing cytoplasmic Bcl-xL levels in non-small cell lung cancer. Sci Rep 2018;8:328.
70. Fan Y, Chen M, Meng J, Yu L, Tu Y, et al. Arsenic trioxide and resveratrol show synergistic anti-leukemia activity and neutralized cardiotoxicity. PLoS One 2014;9:e105890.
71. Gali-Muhtasib H, Hmadi R, Kareh M, Tohme R, Darwiche N. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis. Apoptosis 2015;20:1531-62.
72. Castro L, Gao X, Moore AB, Yu L, Di X, et al. A high concentration of genistein induces cell death in human uterine leiomyoma cells by autophagy. Expert Opin Environ Biol 2016;5.
73. Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, et al. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 2007;72:29-39.
74. Shinojima N, Yokoyama T, Kondo Y, Kondo S. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 2007;3:635-7.
75. Seo SU, Woo SM, Lee HS, Kim SH, Min KJ, et al. mTORC1/2 inhibitor and curcumin induce apoptosis through lysosomal membrane permeabilization-mediated autophagy. Oncogene 2018;37:5205-20.
76. Seo SU, Woo SM, Lee HS, Kim SH, Min KJ, et al. mTORC1/2 inhibitor and curcumin induce apoptosis through lysosomal membrane permeabilization-mediated autophagy. Oncogene 2018;37:5205-20.
77. Fu Y, Chang H, Peng X, Bai Q, Yi L, et al. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PLoS One 2014;9:e102535.
78. Fan Y, Chiu JF, Liu J, Deng Y, Xu C, et al. Resveratrol induces autophagy-dependent apoptosis in HL-60 cells. BMC Cancer 2018;18:581.
79. Trincheri NF, Follo C, Nicotra G, Peracchio C, Castino R, et al. Resveratrol-induced apoptosis depends on the lipid kinase activity of Vps34 and on the formation of autophagolysosomes. Carcinogenesis 2008;29:381-9.
80. Ferraresi A, Phadngam S, Morani F, Galetto A, Alabiso O, et al. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy. Mol Carcinog 2017;56:1164-81.
81. Yeh PS, Wang W, Chang YA, Lin CJ, Wang JJ, et al. Honokiol induces autophagy of neuroblastoma cells through activating the PI3K/Akt/mTOR and endoplasmic reticular stress/ERK1/2 signaling pathways and suppressing cell migration. Cancer Lett 2016;370:66-77.
82. Chang KH, Yan MD, Yao CJ, Lin PC, Lai GM. Honokiol-induced apoptosis and autophagy in glioblastoma multiforme cells. Oncol Lett 2013;6:1435-8.
83. Lin CJ, Chen TL, Tseng YY, Wu GJ, Hsieh MH, et al. Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway. Toxicol Appl Pharmacol 2016;304:59-69.
84. Huang KJ, Kuo CH, Chen SH, Lin CY, Lee YR. Honokiol inhibits in vitro and in vivo growth of oral squamous cell carcinoma through induction of apoptosis, cell cycle arrest and autophagy. J Cell Mol Med 2018;22:1894-908.
85. Huang K, Chen Y, Zhang R, Wu Y, Ma Y, et al. Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis 2018;9:157.
86. Palliyaguru DL, Yuan JM, Kensler TW, Fahey JW. Isothiocyanates: translating the power of plants to people. Mol Nutr Food Res 2018;62:e1700965.
87. Vidoni C, Ferraresi A, Secomandi E, Vallino L, Dhanasekaran DN, et al. Epigenetic targeting of autophagy for cancer prevention and treatment by natural compounds. Semin Cancer Biol 2019; doi: 10.1016/j.semcancer.2019.04.006.
88. Singh VK, Arora D, Ansari MI, Sharma PK. Phytochemicals based chemopreventive and chemotherapeutic strategies and modern technologies to overcome limitations for better clinical applications. Phytother Res 2019;33:3064-89.