1. Noble D. A theory of biological relativity: no privileged level of causation. Interface Focus 2012;2:55-64.

2. Noble D. A biological relativity view of the relationships between genomes and phenotypes. Prog Biophys Mol Biol 2013;111:59-65.

3. Noble D. The music of life. Oxford; 2006.

4. Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 2010;18:884-901.

5. McAllister SS, Weinberg RA. Tumor-host interactions: a far-reaching relationship. J Clin Oncol 2010;28:4022-8.

6. Al-Zoughbi W, Huang J, Paramasivan GS, Till H, Pichler M, et al. Tumor macroenvironment and metabolism. Semin Oncol 2014;41:281-95.

7. McAllister SS, Weinberg RA. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol 2014;16:717-27.

8. Borniger JC. Central regulation of breast cancer growth and metastasis. J Cancer Metastasis Treat 2019;5.

9. Borniger JC, Walker Ii WH,  Surbhi, Emmer KM, Zhang N, Zalenski AA, et al. A role for hypocretin/orexin in metabolic and sleep abnormalities in a mouse model of non-metastatic breast cancer. Cell Metab 2018;28:118-29.e5.

10. Paul D. Cancer the big picture: seeing the forest beyond the trees. Oncolog-Hematolog 2015;1:28-30.

11. Udrişte O. Gena ancestrală şi originea cancerului (in Romanian). Bucharest, Romania: Editura ştiinţifică şi enciclopedică; 1978.

12. Arechaga J. On the boundary between development and neoplasia. An interview with Professor G. Barry Pierce. Int J Dev Biol 1993;37:5-16.

13. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 2019;20:69-84.

14. Gallik KL, Treffy RW, Nacke LM, Ahsan K, Rocha M, et al. Neural crest and cancer: divergent travelers on similar paths. Mech Dev 2017;148:89-99.

15. Vincent MD. The animal within: carcinogenesis and the clonal evolution of cancer cells are speciation events sensu stricto. Evolution 2010;64:1173-83.

16. Vincent MD. Cancer: beyond speciation. Adv Cancer Res 2011;112:283-350.

17. Vincent M. Cancer: a de-repression of a default survival program common to all cells? a life-history perspective on the nature of cancer. Bioessays 2012;34:72-82.

18. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70.

19. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74.

20. Nguyen DX, Massague J. Genetic determinants of cancer metastasis. Nat Rev Genet 2007;8:341-52.

21. Chiang AC, Massague J. Molecular basis of metastasis. N Engl J Med 2008;359:2814-23.

22. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, et al. Cancer genome landscapes. Science 2013;339:1546-58.

23. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889;1:571-3.

24. Sugarbaker EV. Cancer metastasis: a product of tumor-host interactions. Curr Probl Cancer 1979;3:1-59.

25. Fidler IJ, Kripke ML. Metastasis results from preexisting variant cells within a malignant tumor. Science 1977;197:893-5.

26. Price JE, Naito S, Fidler IJ. Growth in an organ microenvironment as a selective process in metastasis. Clin Exp Metastasis 1988;96:91-102.

27. McDonald OG, Li X, Saunders T, Tryggvadottir R, Mentch SJ, et al. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat Genet 2017;49:367-76.

28. Aytes A, Giacobbe A, Mitrofanova A, Ruggero K, Cyrta J, et al. NSD2 is a conserved driver of metastatic prostate cancer progression. Nat Commun 2018;9:5201.

29. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell 2017;168:670-91.

30. Hendrix MJC, Seftor EA, Seftor REB, Kasemeier-Kulesa J, Kulesa PM, et al. Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 2007;7:246-55.

31. Telerman A, Amson R. The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat Rev Cancer 2009;9:206-16.

32. Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer 2001;1:46-54.

33. Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 2006;5:1597-601.

34. Caon I, Bartolini B, Parnigoni A, Carava E, Moretto P, et al. Revisiting the hallmarks of cancer: the role of hyaluronan. Semin Cancer Biol 2020;62:9-19.

35. Amson R, Karp JE, Telerman A. Lessons from tumor reversion for cancer treatment. Curr Opin Oncol 2013;25:59-65.

36. Sun Y, Ma L. The emerging molecular machinery and therapeutic targets of metastasis. Trends Pharmacol Sci 2015;36:349-59.

37. Scheel C, Onder T, Karnoub A, Weinberg RA. Adaptation versus selection: the origins of metastatic behavior. Cancer Res 2007;67:11476-9. discussion 9-80

38. Ruan K, Fang X, Ouyang G. MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett 2009;285:116-26.

39. Nath S, Ghatak D, Das P, Roychoudhury S. Transcriptional control of mitosis: deregulation and cancer. Front Endocrinol (Lausanne) 2015;6:60.

40. Chiaretti S, de Curtis I. Role of liprins in the regulation of tumor cell motility and invasion. Curr Cancer Drug Targets 2016;16:238-48.

41. Saini P, Courtneidge SA. Tks adaptor proteins at a glance. J Cell Sci 2018;131.

42. Anfossi S, Fu X, Nagvekar R, Calin GA. MicroRNAs, regulatory messengers inside and outside cancer cells. Adv Exp Med Biol 2018;1056:87-108.

43. Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi C, et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell 2020;182:1-18.

44. Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell 2019;49:347-60.

45. Schwarzenbach H, Gahan PB. MicroRNA shuttle from cell-to-cell by exosomes and its impact in cancer. Noncoding RNA 2019;5.

46. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015;527:329-35.

47. Rodrigues G, Hoshino A, Kenific CM, Matei IR, Steiner L, et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat Cell Biol 2019;21:1403-12.

48. Tomasetti C, Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2015;347:78-81.

49. Lau EY, Ho NP, Lee TK. Cancer stem cells and their microenvironment: biology and therapeutic implications. Stem Cells Int 2017;2017:3714190.

50. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer 2005;5:744-9.

51. Ganesh K, Basnet H, Kaygusuz Y, Laughney AM, He L, et al. L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer. Nature Cancer 2020:20-45.

52. Brennan MF, Antonescu CR, Moraco N, Singer S. Lessons learned from the study of 10,000 patients with soft tissue sarcoma. Ann Surg 2014;260:416-21. discussion 21-2

53. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61:759-67.

54. Guizard AN, Dejardin OJ, Launay LC, Bara S, Lapotre-Ledoux BM, et al. Diagnosis and management of head and neck cancers in a high-incidence area in France: a population-based study. Medicine (Baltimore) 2017;96:e7285.

55. Olson E, Wintheiser G, Wolfe KM, Droessler J, Silberstein PT. Epidemiology of thyroid cancer: a review of the national cancer database, 2000-2013. Cureus 2019;11:e4127.

56. Welch DR, Hurst DR. Defining the Hallmarks of Metastasis. Cancer Res 2019;79:3011-27.

57. Flanigan RC, Yonover PM. The role of radical nephrectomy in metastatic renal cell carcinoma. Semin Urol Oncol 2001;19:98-102.

58. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997;88:277-85.

59. Kisker O, Onizuka S, Banyard J, Komiyama T, Becker CM, et al. Generation of multiple angiogenesis inhibitors by human pancreatic cancer. Cancer Res 2001;61:7298-304.

60. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005;438:820-7.

61. Mareel M, Oliveira MJ, Madani I. Cancer invasion and metastasis: interacting ecosystems. Virchows Arch 2009;454:599-622.

62. Kano Y, Ishii H, Konno M, Yamasaki M, Miyata H, et al. Cells of origin of squamous epithelium, dysplasia and cancer in the head and neck region after bone marrow transplantation. Int J Oncol 2014;44:443-50.

63. Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, et al. Gastric cancer originating from bone marrow-derived cells. Science 2004;306:1568-71.

64. Guest I, Ilic Z, Ma J, Grant D, Glinsky G, et al. Direct and indirect contribution of bone marrow-derived cells to cancer. Int J Cancer 2010;126:2308-18.

65. Kaplan RN, Rafii S, Lyden D. Preparing the "soil": the premetastatic niche. Cancer Res 2006;66:11089-93.

66. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 2009;457:102-6.

67. Spano D, Zollo M. Tumor microenvironment: a main actor in the metastasis process. Clin Exp Metastasis 2012;29:381-95.

68. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 2015;17:816-26.

69. Liu Y, Cao X. Characteristics and significance of the pre-metastatic niche. Cancer Cell 2016;30:668-81.

70. Norton JD, Deed RW, Craggs G, Sablitzky F. Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol 1998;8:58-65.

71. Guo L, Guo N. Exosomes: potent regulators of tumor malignancy and potential bio-tools in clinical application. Crit Rev Oncol Hematol 2015;95:346-58.

72. Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, et al. Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics. Chem Rev 2018;118:9152-232.

73. Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 2012;14:677-85.

74. Mu W, Rana S, Zoller M. Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia 2013;15:875-87.

75. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012;18:883-91.

76. Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 2018;75:193-208.

77. Cha DJ, Franklin JL, Dou Y, Liu Q, Higginbotham JN, et al. KRAS-dependent sorting of miRNA to exosomes. Elife 2015;4:e07197.

78. Redig AJ, McAllister SS. Breast cancer as a systemic disease: a view of metastasis. J Intern Med 2013;274:113-26.

79. Engblom C, Pfirschke C, Zilionis R, Da Silva Martins J, Bos SA, et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF(high) neutrophils. Science 2017;358.

80. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005;121:335-48.

81. Hattori K, Heissig B, Tashiro K, Honjo T, Tateno M, et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 2001;97:3354-60.

82. Kidd S, Spaeth E, Watson K, Burks J, Lu H, et al. Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One 2012;7:e30563.

83. LeBleu VS, Kalluri R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech 2018;11.

84. Allavena P, Germano G, Mantovani A. Molecular links between inflammation and cancer. Systems Biology of Cancer: Cambridge University Press; 2015. pp. 273-81.

85. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009;30:1073-81.

86. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010;140:883-99.

87. Kundu JK, Surh YJ. Inflammation: gearing the journey to cancer. Mutat Res 2008;659:15-30.

88. Terlizzi M, Casolaro V, Pinto A, Sorrentino R. Inflammasome: cancer's friend or foe? Pharmacol Ther 2014;143:24-33.

89. Setrerrahmane S, Xu H. Tumor-related interleukins: old validated targets for new anti-cancer drug development. Mol Cancer 2017;16:153.

90. Elaraj DM, Weinreich DM, Varghese S, Puhlmann M, Hewitt SM, et al. The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clin Cancer Res 2006;12:1088-96.

91. Tuomisto AE, Makinen MJ, Vayrynen JP. Systemic inflammation in colorectal cancer: Underlying factors, effects, and prognostic significance. World J Gastroenterol 2019;25:4383-404.

92. Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, et al. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 2016;30:836-48.

93. Manning S, Danielson KM. The immunomodulatory role of tumor-derived extracellular vesicles in colorectal cancer. Immunol Cell Biol 2018; doi: 10.1111/imcb.12038.

94. Jain S, Gautam V, Naseem S. Acute-phase proteins: as diagnostic tool. J Pharm Bioallied Sci 2011;3:118-27.

95. Bankey PE. Hepatic reagulation of systemic inflammation following acute injury. Curr Opin Crit Care 1996;2:280-6.

96. Nieuwenhuijzen GA, Haskel Y, Lu Q, Berg RD, van Rooijen N, et al. Macrophage elimination increases bacterial translocation and gut-origin septicemia but attenuates symptoms and mortality rate in a model of systemic inflammation. Ann Surg 1993;218:791-9.

97. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013;342:967-70.

98. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013;342:971-6.

99. Gorjifard S, Goldszmid RS. Microbiota-myeloid cell crosstalk beyond the gut. J Leukoc Biol 2016;100:865-79.

100. Kostic AD, Chun E, Meyerson M, Garrett WS. Microbes and inflammation in colorectal cancer. Cancer Immunol Res 2013;1:150-7.

101. Rutkowski MR, Conejo-Garcia JR. TLR5 signaling, commensal microbiota and systemic tumor promoting inflammation: the three parcae of malignant progression. Oncoimmunology 2015;4:e1021542.

102. Hui D. Prognostication of survival in patients with advanced cancer: predicting the unpredictable? Cancer Control 2015;22:489-97.

103. Wang C, Jin S, Xu S, Cao S. High systemic immune-inflammation index (SII) represents an unfavorable prognostic factor for small cell lung cancer treated with etoposide and platinum-based chemotherapy. Lung 2020;198:405-14.

104. Dupréa A, Malika HZ. Inflammation and cancer: what a surgical oncologist should know. Eur J Surg Oncol 2018;44:566-70.

105. Nakamura K, Smyth MJ. Targeting cancer-related inflammation in the era of immunotherapy. Immunol Cell Biol 2017;95:325-32.

106. Dinarello CA. Why not treat human cancer with interleukin-1 blockade? Cancer Metastasis Rev 2010;29:317-29.

107. Crusz SM, Balkwill FR. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol 2015;12:584-96.

108. Chen G, Huang AC, Zhang W, Zhang G, Wu M, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 2018;560:382-6.

109. Zhou M, Chen J, Zhou L, Chen W, Ding G, et al. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol 2014;292:65-9.

110. Liu Y, Gu Y, Cao X. The exosomes in tumor immunity. Oncoimmunology 2015;4:e1027472.

111. Whiteside TL. Exosomes and tumor-mediated immune suppression. J Clin Invest 2016;126:1216-23.

112. Yin Y, Cai X, Chen X, Liang H, Zhang Y, et al. Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth. Cell Res 2014;24:1164-80.

113. Berchem G, Noman MZ, Bosseler M, Paggetti J, Baconnais S, et al. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-beta and miR23a transfer. Oncoimmunology 2016;5:e1062968.

114. Belkaid Y, Harrison OJ. Homeostatic Immunity and the Microbiota. Immunity 2017;46:562-76.

115. Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature 2016;535:75-84.

116. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018;359:104-8.

117. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018;359:91-7.

118. Tamura R, Tanaka T, Yamamoto Y, Akasaki Y, Sasaki H. Dual role of macrophage in tumor immunity. Immunotherapy 2018;10:899-909.

119. Shitara K, Nishikawa H. Regulatory T cells: a potential target in cancer immunotherapy. Ann N Y Acad Sci 2018;1417:104-15.

120. Whiteside TL. The role of regulatory T cells in cancer immunology. Immunotargets Ther 2015;4:159-71.

121. Zamarron BF, Chen W. Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 2011;7:651-8.

122. Shalapour S, Karin M. Immunity, inflammation, and cancer: an eternal fight between good and evil. J Clin Invest 2015;125:3347-55.

123. Labelle M, Begum S, Hynes RO. Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A 2014;111:E3053-61.

124. Ocana A, Nieto-Jimenez C, Pandiella A, Templeton AJ. Neutrophils in cancer: prognostic role and therapeutic strategies. Mol Cancer 2017;16:137.

125. Mouchemore KA, Anderson RL, Hamilton JA. Neutrophils, G-CSF and their contribution to breast cancer metastasis. FEBS J 2018;285:665-79.

126. Cools-Lartigue J, Spicer J, Najmeh S, Ferri L. Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci 2014;71:4179-94.

127. Park J, Wysocki RW, Amoozgar Z, Maiorino L, Fein MR, et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med 2016;8:361ra138.

128. Lieffers JR, Mourtzakis M, Hall KD, McCargar LJ, Prado CM, et al. A viscerally driven cachexia syndrome in patients with advanced colorectal cancer: contributions of organ and tumor mass to whole-body energy demands. Am J Clin Nutr 2009;89:1173-9.

129. Warburg O. On the origin of cancer cells. Science 1956;123:309-14.

130. Vaupel P, Mayer A. Availability, not respiratory capacity governs oxygen consumption of solid tumors. Int J Biochem Cell Biol 2012;44:1477-81.

131. Davidson SM, Papagiannakopoulos T, Olenchock BA, Heyman JE, Keibler MA, et al. Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab 2016;23:517-28.

132. Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev 2009;89:381-410.

133. Fearon KC, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 2012;16:153-66.

134. Porporato PE. Understanding cachexia as a cancer metabolism syndrome. Oncogenesis 2016;5:e200.

135. Vander Heiden MG, DeBerardinis RJ. Understanding the Intersections between Metabolism and Cancer Biology. Cell 2017;168:657-69.

136. Alam MM, Lal S, FitzGerald KE, Zhang L. A holistic view of cancer bioenergetics: mitochondrial function and respiration play fundamental roles in the development and progression of diverse tumors. Clin Transl Med 2016;5:3.

137. Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Tanowitz HB, et al. Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int J Biochem Cell Biol 2011;43:1045-51.

138. Pavlides S, Tsirigos A, Migneco G, Whitaker-Menezes D, Chiavarina B, et al. The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle 2010;9:3485-505.

139. Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, et al. Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse Warburg effect”: a transcriptional informatics analysis with validation. Cell Cycle 2010;9:2201-19.

140. Tsoli M, Robertson G. Cancer cachexia: malignant inflammation, tumorkines, and metabolic mayhem. Trends Endocrinol Metab 2013;24:174-83.

141. Flint TR, Janowitz T, Connell CM, Roberts EW, Denton AE, et al. Tumor-induced IL-6 reprograms host metabolism to suppress anti-tumor immunity. Cell Metab 2016;24:672-84.

142. Lee YM, Chang WC, Ma WL. Hypothesis: solid tumours behave as systemic metabolic dictators. J Cell Mol Med 2016;20:1076-85.

143. Argiles JM, Stemmler B, Lopez-Soriano FJ, Busquets S. Inter-tissue communication in cancer cachexia. Nat Rev Endocrinol 2018;15:9-20.

144. Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer 2014;14:754-62.

145. George J, Cannon T, Lai V, Richey L, Zanation A, et al. Cancer cachexia syndrome in head and neck cancer patients: Part II. pathophysiology. Head Neck 2007;29:497-507.

146. Roxburgh CS, McMillan DC. Cancer and systemic inflammation: treat the tumour and treat the host. Br J Cancer 2014;110:1409-12.

147. Payen VL, Porporato PE, Baselet B, Sonveaux P. Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. Cell Mol Life Sci 2016;73:1333-48.

148. Porporato PE, Payen VL, Baselet B, Sonveaux P. Metabolic changes associated with tumor metastasis, part 2: Mitochondria, lipid and amino acid metabolism. Cell Mol Life Sci 2016;73:1349-63.

149. Chasen M, Bhargava R, Hirschman S. Immunomodulatory agents for the treatment of cachexia. Curr Opin Support Palliat Care 2014;8:328-33.

150. Das SK, Eder S, Schauer S, Diwoky C, Temmel H, et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 2011;333:233-8.

151. Mantovani G, Maccio A, Mura L, Massa E, Mudu MC, et al. Serum levels of leptin and proinflammatory cytokines in patients with advanced-stage cancer at different sites. J Mol Med (Berl) 2000;78:554-61.

152. Kir S, White JP, Kleiner S, Kazak L, Cohen P, et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 2014;513:100-4.

153. Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 2014;20:433-47.

154. Tomasin R, Martin A, Cominetti MR. Metastasis and cachexia: alongside in clinics, but not so in animal models. J Cachexia Sarcopenia Muscle 2019;10:1183-94.

155. Zhang G, Liu Z, Ding H, Zhou Y, Doan HA, et al. Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90. Nat Commun 2017;8:589.

156. Lazar I, Clement E, Dauvillier S, Milhas D, Ducoux-Petit M, et al. Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer. Cancer Res 2016;76:4051-7.

157. Tomasetti M, Lee W, Santarelli L, Neuzil J. Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy. Exp Mol Med 2017;49:e285.

158. Marinho R, Alcantara PSM, Ottoch JP, Seelaender M. Role of exosomal microRNAs and myomiRs in the development of cancer cachexia-associated muscle wasting. Front Nutr 2017;4:69.

159. He WA, Calore F, Londhe P, Canella A, Guttridge DC, et al. Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci U S A 2014;111:4525-9.

160. Masri S, Papagiannakopoulos T, Kinouchi K, Liu Y, Cervantes M, et al. Lung adenocarcinoma distally rewires hepatic circadian homeostasis. Cell 2016;165:896-909.

161. Goncalves MD, Hwang SK, Pauli C, Murphy CJ, Cheng Z, et al. Fenofibrate prevents skeletal muscle loss in mice with lung cancer. Proc Natl Acad Sci U S A 2018;115:E743-52.

162. Bruning PF, Bonfrer JM, van Noord PA, Hart AA, de Jong-Bakker M, et al. Insulin resistance and breast-cancer risk. Int J Cancer 1992;52:511-6.

163. Maloney EK, McLaughlin JL, Dagdigian NE, Garrett LM, Connors KM, et al. An anti-insulin-like growth factor I receptor antibody that is a potent inhibitor of cancer cell proliferation. Cancer Res 2003;63:5073-83.

164. Hartl WH, Demmelmair H, Jauch KW, Koletzko B, Schildberg FW. Effect of glucagon on protein synthesis in human rectal cancer in situ. Ann Surgery 1998;227:390-7.

165. Mayers JR, Torrence ME, Danai LV, Papagiannakopoulos T, Davidson SM, et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 2016;353:1161-5.

166. Mayers JR, Wu C, Clish CB, Kraft P, Torrence ME, et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med 2014;20:1193-8.

167. Bindels LB, Delzenne NM. Muscle wasting: the gut microbiota as a new therapeutic target? Int J Biochem Cell Biol 2013;45:2186-90.

168. Nieuwdorp M, Gilijamse PW, Pai N, Kaplan LM. Role of the microbiome in energy regulation and metabolism. Gastroenterology 2014;146:1525-33.

169. Argiles JM, Lopez-Soriano J, Almendro V, Busquets S, Lopez-Soriano FJ. Cross-talk between skeletal muscle and adipose tissue: a link with obesity? Med Res Rev 2005;25:49-65.

170. Hellerstein MK, Meydani SN, Meydani M, Wu K, Dinarello CA. Interleukin-1-induced anorexia in the Rat - influence of prostaglandins. J Clin Invest 1989;84:228-35.

171. Chauhan A, Sequeria A, Manderson C, Maddocks M, Wasley D, et al. Exploring autonomic nervous system dysfunction in patients with cancer cachexia: a pilot study. Auton Neurosci 2012;166:93-5.

172. Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 1995;332:1351-62.

173. Murphy KT. The pathogenesis and treatment of cardiac atrophy in cancer cachexia. Am J Physiol Heart Circ Physiol 2016;310:H466-77.

174. Belloum Y, Rannou-Bekono F, Favier FB. Cancer-induced cardiac cachexia: Pathogenesis and impact of physical activity (Review). Oncol Rep 2017;37:2543-52.

175. Anker SD, Sharma R. The syndrome of cardiac cachexia. Int J Cardiol 2002;85:51-66.

176. Israel M, Schwartz L. The metabolic advantage of tumor cells. Mol Cancer 2011;10:70.

177. Israël M. A primary cause of cancer: GABA deficiency in endocrine pancreas. Cancer Therapy 2012;8:171-83.

178. Cancer metabolism: an alteration of the anabolic–catabolic selection switch. OA Cancer 2014;2:1.

179. Israël M. Metabolic rewiring of stem cells and differentiated cells in cancer: the hypothetical consequences of a GABA deficiency in endocrine pancreas. J Cancer Metastasis Treat 2019;5.

180. Kuhn T, Floegel A, Sookthai D, Johnson T, Rolle-Kampczyk U, et al. Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study. BMC Med 2016;14:13.

181. Beleva E, Grudeva-Popova J. From Virchow's triad to metastasis: circulating hemostatic factors as predictors of risk for metastasis in solid tumors. J BUON 2013;18:25-33.

182. Karikoski M, Marttila-Ichihara F, Elima K, Rantakari P, Hollmen M, et al. Clever-1/stabilin-1 controls cancer growth and metastasis. Clin Cancer Res 2014;20:6452-64.

183. Khorana AA, Francis CW, Culakova E, Kuderer NM, Lyman GH. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost 2007;5:632-4.

184. Falanga A, Russo L, Milesi V, Vignoli A. Mechanisms and risk factors of thrombosis in cancer. Crit Rev Oncol Hematol 2017;118:79-83.

185. van den Berg YW, Osanto S, Reitsma PH, Versteeg HH. The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood 2012;119:924-32.

186. Magnus N, Garnier D, Meehan B, McGraw S, Lee TH, et al. Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations. Proc Natl Acad Sci U S A 2014;111:3544-9.

187. Versteeg HH, Schaffner F, Kerver M, Petersen HH, Ahamed J, et al. Inhibition of tissue factor signaling suppresses tumor growth. Blood 2008;111:190-9.

188. Labelle M, Hynes RO. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov 2012;2:1091-9.

189. Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011;20:576-90.

190. Laubli H, Borsig L. Selectins promote tumor metastasis. Semin Cancer Biol 2010;20:169-77.

191. Becker KA, Beckmann N, Adams C, Hessler G, Kramer M, et al. Melanoma cell metastasis via P-selectin-mediated activation of acid sphingomyelinase in platelets. Clin Exp Metastasis 2017;34:25-35.

192. Lavergne M, Janus-Bell E, Schaff M, Gachet C, Mangin PH. Platelet integrins in tumor metastasis: do they represent a therapeutic target? Cancers (Basel) 2017;9.

193. Mege D, Panicot-Dubois L, Ouaissi M, Robert S, Sielezneff I, et al. The origin and concentration of circulating microparticles differ according to cancer type and evolution: a prospective single-center study. Int J Cancer 2016;138:939-48.

194. Mezouar S, Frere C, Darbousset R, Mege D, Crescence L, et al. Role of platelets in cancer and cancer-associated thrombosis: experimental and clinical evidences. Thromb Res 2016;139:65-76.

195. Dvorak HF, Quay SC, Orenstein NS, Dvorak AM, Hahn P, et al. Tumor shedding and coagulation. Science 1981;212:923-4.

196. Del Conde I, Bharwani LD, Dietzen DJ, Pendurthi U, Thiagarajan P, et al. Microvesicle-associated tissue factor and Trousseau’s syndrome. J Thromb Haemost 2007;5:70-4.

197. Geddings JE, Mackman N. Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood 2013;122:1873-80.

198. Magnon C. Role of the autonomic nervous system in tumorigenesis and metastasis. Mol Cell Oncol 2015;2:e975643.

199. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 2000;52:595-638.

200. Li T, Harada M, Tamada K, Abe K, Nomoto K. Repeated restraint stress impairs the antitumor T cell response through its suppressive effect on Th1-type CD4+ T cells. Anticancer Res 1997;17:4259-68.

201. Cao L, Liu X, Lin EJ, Wang C, Choi EY, et al. Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell 2010;142:52-64.

202. Burfeind KG, Michaelis KA, Marks DL. The central role of hypothalamic inflammation in the acute illness response and cachexia. Semin Cell Dev Biol 2016;54:42-52.

203. Braun TP, Zhu X, Szumowski M, Scott GD, Grossberg AJ, et al. Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic-pituitary-adrenal axis. J Exp Med 2011;208:2449-63.

204. Burfeind KG, Zhu X, Levasseur PR, Michaelis KA, Norgard MA, et al. TRIF is a key inflammatory mediator of acute sickness behavior and cancer cachexia. Brain Behav Immun 2018;73:364-74.

205. Mravec B, Horvathova L, Cernackova A. Hypothalamic inflammation at a crossroad of somatic diseases. Cell Mol Neurobiol 2019;39:11-29.

206. Molfino A, Iannace A, Colaiacomo MC, Farcomeni A, Emiliani A, et al. Cancer anorexia: hypothalamic activity and its association with inflammation and appetite-regulating peptides in lung cancer. J Cachexia Sarcopenia Muscle 2017;8:40-7.

207. Mauffrey P, Tchitchek N, Barroca V, Bemelmans AP, Firlej V, et al. Progenitors from the central nervous system drive neurogenesis in cancer. Nature 2019;569:672-8.

208. Cole SW, Nagaraja AS, Lutgendorf SK, Green PA, Sood AK. Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer 2015;15:563-72.

209. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 2006;440:692-6.

210. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006;124:407-21.

211. Elefteriou F. Role of sympathetic nerves in the establishment of metastatic breast cancer cells in bone. J Bone Oncol 2016;5:132-4.

212. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, et al. Autonomic nerve development contributes to prostate cancer progression. Science 2013;341:1236361.

213. Grytli HH, Fagerland MW, Fossa SD, Tasken KA, Haheim LL. Use of beta-blockers is associated with prostate cancer-specific survival in prostate cancer patients on androgen deprivation therapy. Prostate 2013;73:250-60.

214. Lemeshow S, Sorensen HT, Phillips G, Yang EV, Antonsen S, et al. Beta-blockers and survival among Danish patients with malignant melanoma: a population-based cohort study. Cancer Epidemiol Biomarkers Prev 2011;20:2273-9.

215. Melhem-Bertrandt A, Chavez-Macgregor M, Lei X, Brown EN, Lee RT, et al. Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol 2011;29:2645-52.

216. Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nat Rev Endocrinol 2012;8:743-54.

217. Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, et al. Expression and function of the cholinergic system in immune cells. Front Immunol 2017;8:1085.

218. Yu H, Xia H, Tang Q, Xu H, Wei G, et al. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation. Sci Rep 2017;7:40802.

219. Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, et al. Denervation suppresses gastric tumorigenesis. Sci Transl Med 2014;6:250ra115.

220. Jobling P, Pundavela J, Oliveira SM, Roselli S, Walker MM, et al. Nerve-cancer cell cross-talk: a novel promoter of tumor progression. Cancer Res 2015;75:1777-81.

221. Pelosof LC, Gerber DE. Paraneoplastic syndromes: an approach to diagnosis and treatment. Mayo Clin Proc 2010;85:838-54.

222. DeLellis RA, Xia L. Paraneoplastic endocrine syndromes: a review. Endocr Pathol 2003;14:303-17.

223. Castellone MD, Laukkanen MO, Teramoto H, Bellelli R, Ali G, et al. Cross talk between the bombesin neuropeptide receptor and Sonic hedgehog pathways in small cell lung carcinoma. Oncogene 2015;34:1679-87.

224. Sherbet GV. Hormonal influences on cancer progression and prognosis. Vitam Horm 2005;71:147-200.

225. Mousa SA, Glinsky GV, Lin HY, Ashur-Fabian O, Hercbergs A, et al. Contributions of thyroid hormone to cancer metastasis. Biomedicines 2018;6:89.

226. Su SC, Hsieh MJ, Yang WE, Chung WH, Reiter RJ, et al. Cancer metastasis: mechanisms of inhibition by melatonin. J Pineal Res 2017;62.

227. Zaki NF, Sabri YM, Farouk O, Abdelfatah A, Spence DW, et al. Depressive symptoms, sleep profiles and serum melatonin levels in a sample of breast cancer patients. Nat Sci Sleep 2020;12:135-49.

228. Yu B, Zanetti KA, Temprosa M, Albanes D, Appel N, et al. The consortium of metabolomics studies (COMETS): metabolomics in 47 prospective cohort studies. Am J Epidemiol 2019;188:991-1012.

229. Dean DC, Shen S, Hornicek FJ, Duan Z. From genomics to metabolomics: emerging metastatic biomarkers in osteosarcoma. Cancer Metastasis Rev 2018;37:719-31.

230. Xiao S, Zhou L. Gastric cancer: metabolic and metabolomics perspectives (Review). Int J Oncol 2017;51:5-17.

231. Peng X, Chen Z, Farshidfar F, Xu X, Lorenzi PL, et al. Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers. Cell Rep 2018;23:255-69.e4.

232. Cieslik M, Hoang SA, Baranova N, Chodaparambil S, Kumar M, et al. Epigenetic coordination of signaling pathways during the epithelial-mesenchymal transition. Epigenetics Chromatin 2013;6:28.

233. Hong D, Messier TL, Tye CE, Dobson JR, Fritz AJ, et al. Runx1 stabilizes the mammary epithelial cell phenotype and prevents epithelial to mesenchymal transition. Oncotarget 2017;8:17610-27.

234. Vincent MD. Cancer: towards a general theory of the target: all successful cancer therapies, actual or potential, are reducible to either (or both) of two fundamental strategies. Bioessays 2017;39.

235. Dai S, Wei D, Wu Z, Zhou X, Wei X, et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther 2008;16:782-90.

236. Que RS, Lin C, Ding GP, Wu ZR, Cao LP. Increasing the immune activity of exosomes: the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer. J Zhejiang Univ Sci B 2016;17:352-60.

237. Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, et al. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol Cell Proteomics 2013;12:587-98.

238. Kitano H. Biological robustness. Nat Rev Genet 2004;5:826-37.

239. Tyson JJ, Chen KC, Novak B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 2003;15:221-31.

240. Chen JC, Alvarez MJ, Talos F, Dhruv H, Rieckhof GE, et al. Identification of causal genetic drivers of human disease through systems-level analysis of regulatory networks. Cell 2014;159:402-14.

241. Archetti M, Pienta KJ. Cooperation among cancer cells: applying game theory to cancer. Nat Rev Cancer 2019;19:110-7.

242. Csermely P, Korcsmaros T. Cancer-related networks: a help to understand, predict and change malignant transformation. Semin Cancer Biol 2013;23:209-12.

243. Antonia SJ, Borghaei H, Ramalingam SS, Horn L, De Castro Carpeno J, et al. Four-year survival with nivolumab in patients with previously treated advanced non-small-cell lung cancer: a pooled analysis. Lancet Oncol 2019;20:1395-408.

244. Garon EB, Hellmann MD, Rizvi NA, Carcereny E, Leighl NB, et al. Five-year overall survival for patients with advanced nonsmall-cell lung cancer treated with pembrolizumab: results from the phase I keynote-001 study. J Clin Oncol 2019;37:2518-27.

245. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2019;381:1535-46.

246. Rosenzweig SA. Acquired resistance to drugs targeting tyrosine kinases. Adv Cancer Res 2018;138:71-98.

247. Liu X, McMurphy T, Xiao R, Slater A, Huang W, et al. Hypothalamic gene transfer of BDNF inhibits breast cancer progression and metastasis in middle age obese mice. Mol Ther 2014;22:1275-84.

248. Bucsek MJ, Qiao G, MacDonald CR, Giridharan T, Evans L, et al. Beta-adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8(+) T cells and undermines checkpoint inhibitor therapy. Cancer Res 2017;77:5639-51.

249. Kokolus KM, Zhang Y, Sivik JM, Schmeck C, Zhu J, et al. Beta blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice. Oncoimmunology 2018;7:e1405205.

250. Springer J, Tschirner A, Haghikia A, von Haehling S, Lal H, et al. Prevention of liver cancer cachexia-induced cardiac wasting and heart failure. Eur Heart J 2014;35:932-41.

251. Saada-Bouzid E, Defaucheux C, Karabajakian A, Coloma VP, Servois V, et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol 2017;28:1605-11.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)


All published articles are preserved here permanently:


All published articles are preserved here permanently: