REFERENCES

1. Hidalgo-Mora JJ, García-Vigara A, Sánchez-Sánchez ML, García-Pérez MÁ, Tarín J, et al. The Mediterranean diet: a historical perspective on food for health. Maturitas 2020;132:65-9.

2. La Vecchia C. Mediterranean diet and cancer. Public Health Nutr 2004;7:965-8.

3. Di Daniele N, Noce A, Vidiri MF, Moriconi E, Marrone G, et al. Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget 2017;8:8947-79.

4. Mazzocchi A, Leone L, Agostoni C, Pali-Schöll I. The secrets of the Mediterranean diet. Does [only] olive oil matter? Nutrients 2019;11:2941.

5. Tuttolomondo A, Simonetta I, Daidone M, Mogavero A, Ortello A, et al. Metabolic and vascular effect of the mediterranean diet. Int J Mol Sci 2019;20:4716.

6. Borzì AM, Biondi A, Basile F, Luca S, Vicari ESD, et al. Olive oil effects on colorectal cancer. Nutrients 2018;11:32.

7. Peluso I, Yarla NS, Ambra R, Pastore G, Perry G. MAPK signalling pathway in cancers: olive products as cancer preventiveand therapeutic agents. Sem Cancer Biol 2019;56:185-95.

8. Das B, Antoon R, Tsuchida R, Lotfi S, Morozova O, et al. Squalene selectively protects mouse bone marrow progenityors against cisplatin and carboplatin-induced cytotoxicity in vivo without protecting tumor growth. Neoplasia 2008;10:1105-19.

9. Shen T, Lu Y, Zhang Q. High squalene epoxidase in tumors predicts worse survival in patients with hepatocellular carcinoma: integrated bioinformatic analysis on NAFLD and HCC. Cancer Control 2020;27:1073274820914663.

10. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69:7-34.

11. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020;70:7-30.

12. Public Health Agency of Canada; Statistics Canada; Canadian Cancer Society; provincial/territorial cancer registries. Release notice - Canadian cancer statistics 2019. Avis de publication - Statistiques canadiennes sur le cancer 2019. Health Promot Chronic Dis Prev Can 2019;39:255.

13. Brenner DR, Weir HK, Demers AA, Ellison LF, Louzado C, et al; Canadian Cancer Statistics Advisory Committee. Projected estimates of cancer in canada in 2020. CMAJ 2020;192:E199-205.

14. World Health Organization, Newsroom, Facts Sheet, Detail, Cancer. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer. [Last accessed on 28 Jul 2020].

15. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 2020;5:28.

16. Dernini S, Berry EM, Serra-Majem L, La Vecchia C, Capone R, et al. Med Diet 4.0: the Mediterranean diet with four sustainable benefits. Public Health Nutr 2017;20:1322-30.

17. Berry EM. Sustainable food systems and the mediterranean diet. Nutrients 2019;11:2229.

18. Fresán U, Martínez-González MA, Sabaté J, Bes-Rastrollo M. Global sustainability (health, environment and monetary costs) of three dietary patterns: results from a Spanish cohort (the SUN project). BMJ Open 2019;9:e021541.

19. Truzzi ML, Puviani BM, Tripodi A, Toni S, Farinetti A, et al. Mediterranean diet as a model of sustainable, resilient and healthy diet. Prog Nutr 2020;22:388-94.

20. Martínez-González MÁ, Hershey MS, Zazpe I, Trichopoulou A. Transferability of the mediterranean diet to non-mediterranean countries. What is and what is not the mediterranean diet. Nutrients 2017;9:1226.

21. George ES, Kucianski T, Mayr HL, Moschonis G, Tierney AC, et al. A mediterranean diet model in Australia: Strategies for translating the traditional mediterranean diet into a multicultural setting. Nutrients 2018;10:465.

22. Mantzioris E, Villani A. Translation of a mediterranean-style diet into the Australian dietary guidelines: a nutritional, ecological and environmental perspective. Nutrients 2019;11:2507.

23. Wang J, Lin X, Bloomgarden ZT, Ning G. The Jiangnan diet, a healthy diet pattern for Chinese. J Diabetes 2020;12:365-71.

24. San Gabriel A, Ninomiya K, Uneyama H. The role of the japanese traditional diet in healthy and sustainable dietary patterns around the world. Nutrients 2018;10:173.

25. Wu X, Zhou QH, Xu K. Are isothiocyanates potential anti-cancer drugs? Acta Pharmacol Sin 2009;30:501-12.

26. Ranjan A, Ramachandran S, Gupta N, Kaushik I, Wright S, et al. Role of phytochemicals in cancer prevention. Int J Mol Sci 2019;20:4981.

27. Gründemann C, Huber R. Chemoprevention with isothiocyanates - From bench to bedside. Cancer Lett 2018;414:26-33.

28. Zhang Z, Bergan R, Shannon J, Slatore CG, Bobe G, et al. The role of cruciferous vegetables and isothiocyanates for lung cancer prevention: current status, challenges, and future research directions. Mol Nutr Food Res 2018;62:e1700936.

29. Kamal MM, Akter S, Lin CN, Nazzal S. Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems. Arch Pharm Res 2020;43:371-84.

30. Singh D, Arora R, Bhatia A, Singh H, Singh B, et al. Molecular targets in cancer prevention by 4-(methylthio)butyl isothiocyanate - a comprehensive review. Life Sci 2020;241:117061.

31. Soundararajan P, Kim JS. Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules 2018;23:2983.

32. Mastuo T, Miyata Y, Yuno T, Mukae Y, Otsubo A, et al. Molecular mechanisms of the anti-cancer effects of isothiocyanates from cruciferous vegetables in bladder cancer. Molecules 2020;25:575.

33. Amjad AI, Parikh RA, Appleman LJ, Hahm ER, Singh K, et al. Broccoli-derived sulforaphane and chemoprevention of prostate cancer: from bench to bedside. Curr Pharmacol Rep 2015;1:382-90.

34. Zhang Y, Tang L. Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin 2007;28:1343-54.

35. Bayat Mokhtari R, Baluch N, Homayouni TS, Morgatskaya E, Kumar S, et al. The role of Sulforaphane in cancer chemoprevention and health benefits: a mini-review. J Cell Commun Signal 2018;12:91-101.

36. Sita G, Hrelia P, Graziosi A, Morroni F. Sulforaphane from cruciferous vegetables: recent advances to improve glioblastoma treatment. Nutrients 2018;10:1755.

37. Mayers JR, Vander Heiden MG. Nature and nurture: what determines tumor metabolic phenotypes? Cancer Res 2017;77:3131-4.

38. Kubo E, Chhunchha B, Singh P, Sasaki H, Singh DP. Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Sci Rep 2017;7:14130.

39. Kitamura H, Motohashi H. NRF2 addiction in cancer cells. Cancer Sci 2018;109:900-11.

40. Burnett JP, Lim G, Li Y, Shah RB, Lim R, et al. Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells. Cancer Lett 2017;394:52-64.

41. Kan SF, Wang J, Sun GX. Sulforaphane regulates apoptosis- and proliferation-related signaling pathways and synergizes with cisplatin to suppress human ovarian cancer. Int J Mol Med 2018;42:2447-58.

42. Negrette-Guzmán M. Combinations of the antioxidants sulforaphane or curcumin and the conventional antineoplastics cisplatin or doxorubicin as prospects for anticancer chemotherapy. Eur J Pharmacol 2019;859:172513.

43. Mokhtari RB, Baluch N, Morgatskaya E, Kumar S, Sparaneo A, et al. Human bronchial carcinoid tumor initiating cells are targeted by the combination of acetazolamide and sulforaphane. BMC Cancer 2019;19:864.

44. Islam SS, Mokhtari RB, Akbari P, Hatina J, Yeger H, et al. Simultaneous targeting of bladder tumor growth, survival, and epithelial-to-mesenchymal transition with a novel therapeutic combination of acetazolamide (AZ) and sulforaphane (SFN). Target Oncol 2016;11:209-27.

45. Malavolta M, Bracci M, Santarelli L, Sayeed A, Pierpaoli E, et al. Inducers of Senescence, toxic compounds, and senolytics: the multiple faces of Nrf2-activating phytochemicals in cancer adjuvant therapy. Mediators Inflamm 2018;2018:4159013.

46. Li S, Chen M, Li Y, Tollefsbol TO. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics 2019;11:82.

47. Bell L, Oloyede OO, Lignou S, Wagstaff C, Methven L. Taste and flavor perceptions of glucosinolates, isothiocyanates, and related compounds. Mol Nutr Food Res 2018;62:e1700990.

48. Wu QJ, Yang G, Zheng W, Li HL, Gao J, et al. Pre-diagnostic cruciferous vegetables intake and lung cancer survival among Chinese women. Sci Rep 2015;5:10306.

49. Nigro C, Leone A, Fiory F, Prevenzano I, Nicolò A, et al. Dicarbonyl stress at the crossroads of healthy and unhealthy aging. Cells 2019;8:749.

50. Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, et al. Oxidative stress and dietary phytochemicals: role in cancer chemoprevention and treatment. Cancer Lett 2018;413:122-34.

51. Lv HH, Zhen CX, Liu JY, Shang P. PEITC triggers multiple forms of cell death by GSH-iron-ROS regulation in K7M2 murine osteosarcoma cells. Acta Pharmacol Sin 2020; doi: 10.1038/s41401-020-0376-8.

52. Liskova A, Kubatka P, Samec M, Zubor P, Mlyncek M, et al. Dietary phytochemicals targeting cancer stem cells. Molecules 2019;24:899.

53. Nguyen YT, Moon JY, Ediriweera MK, Cho SK. Phenethyl isothiocyanate suppresses stemness in the chemo- and radio-resistant triple-negative breast cancer cell line MDA-MB-231/IR via downregulation of metadherin. Cancers (Basel) 2020;12:268.

54. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74.

55. Girotti MR, Salatino M, Dalotto-Moreno T, Rabinovich GA. Sweetening the hallmarks of cancer: Galectins as multifunctional mediators of tumor progression. J Exp Med 2020;217:e20182041.

56. Tian H, Zhou Y, Yang G, Geng Y, Wu S, et al. Sulforaphane-cysteine suppresses invasion via downregulation of galectin-1 in human prostate cancer DU145 and PC3 cells. Oncol Rep 2016;36:1361-8.

57. Abbaoui B, Lucas CR, Riedl KM, Clinton SK, Mortazavi A. Cruciferous vegetables, isothiocyanates, and bladder cancer prevention. Mol Nutr Food Res 2018;62:e1800079.

58. Palliyaguru DL, Yuan JM, Kensler TW, Fahey JW. Isothiocyanates: translating the power of plants to people. Mol Nutr Food Res 2018;62:e1700965.

59. Mithen R, Ho E. Isothiocyanates for human health. Mol Nutr Food Res 2018;62:e1870079.

60. Baird L, Yamamoto M. The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol 2020;40:e00099-20.

61. Park JE, Sun Y, Lim SK, Tam JP, Dekker M, et al. Dietary phytochemical PEITC restricts tumor development via modulation of epigenetic writers and erasers. Sci Rep 2017;7:40569.

62. Paul B, Li Y, Tollefsbol TO. The effects of combinatorial genistein and sulforaphane in breast tumor inhibition: role in epigenetic regulation. Int J Mol Sci 2018;19:1754.

63. Hyun TK. A recent overview on sulforaphane as a dietary epigenetic modulator. Excli J 2020;19:131-4.

64. Martin SL, Royston KJ, Tollefsbol TO. The role of non-coding RNAs and isothiocyanates in cancer. Mol Nutr Food Res 2018;62:e1700913.

65. Lu Z, Zou J, Li S, Topper MJ, Tao Y, et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature 2020;579:284-90.

66. Mitsiogianni M, Amery T, Franco R, Zoumpourlis V, Pappa A, et al. From chemo-prevention to epigenetic regulation: the role of isothiocyanates in skin cancer prevention. Pharmacol Ther 2018;190:187-201.

67. Sehrawat A, Roy R, Pore SK, Hahm ER, Samanta SK, et al. Mitochondrial dysfunction in cancer chemoprevention by phytochemicals from dietary and medicinal plants. Semin Cancer Biol 2017;47:147-53.

68. Sarkar FH, Li YW. Targeting multiple signal pathways by chemopreventive agents for cancer prevention and therapy. Acta Pharmacol Sin 2007;28:1305-15.

69. Bijangi-Vishehsaraei K, Saadatzadeh MR, Wang H, Nguyen A, Kamocka MM, et al. Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways. J Neurosurg 2017;127:1219-30.

70. Lamy E, Scholtes C, Herz C, Mersch-Sundermann V. Pharmacokinetics and pharmacodynamics of isothiocyanates. Drug Metab Rev 2011;43:387-407.

71. Rakariyatham K, Wu X, Tang Z, Han Y, Wang Q, et al. Synergism between luteolin and sulforaphane in anti-inflammation. Food Funct 2018;9:5115-23.

72. Ibrahim A, Al-Hizab FA, Abushouk AI, Abdel-Daim MM. Nephroprotective effects of benzyl isothiocyanate and resveratrol against cisplatin-induced oxidative stress and inflammation. Front Pharmacol 2018;9:1268.

73. Barrera LN, Cassidy A, Johnson IT, Bao Y, Belshaw NJ. Epigenetic and antioxidant effects of dietary isothiocyanates and selenium: potential implications for cancer chemoprevention. Proc Nutr Soc 2012;71:237-45.

74. Paul B, Li Y, Tollefsbol TO. The effects of combinatorial genistein and sulforaphane in breast tumor inhibition: role in epigenetic regulation. Int J Mol Sci 2018;19:1754.

75. Rakariyatham K, Yang X, Gao Z, Song M, Han Y, et al. Synergistic chemopreventive effect of allylisothiocyanate and sulforaphane on non-small cell lung carcinoma cells. Food Funct 2019;10:893-902.

76. Jaman MS, Sayeed MA. Ellagic acid, sulforaphane, and ursolic acid in the prevention and therapy of breast cancer: current evidence and future perspectives. Breast Cancer 2018;25:517-28.

77. Agathokleous E, Calabrese EJ. Hormesis: the dose response for the 21st century: the future has arrived. Toxicology 2019;425:152249.

78. Calabrese EJ, Agathokleous E. Building biological shields via hormesis. Trends Pharmacol Sci 2019;40:8-10.

79. Li X, Yang T, Sun Z. Hormesis in health and chronic diseases. Trends Endocrinol Metab 2019;30:944-58.

80. Jodynis-Liebert J, Kujawska M. Biphasic dose-response induced by phytochemicals: experimental evidence. J Clin Med 2020;9:718.

81. Lee YM, Lee DH. Mitochondrial toxins and healthy lifestyle meet at the crossroad of hormesis. Diabetes Metab J 2019;43:568-77.

82. Klaus S, Ost M. Mitochondrial uncoupling and longevity - A role for mitokines? Exp Gerontol 2020;130:110796.

83. Kenny TC, Craig AJ, Villanueva A, Germain D. Mitohormesis primes tumor invasion and metastasis. Cell Rep 2019;27:2292-303.

84. Zelenka J, Koncošová M, Ruml T. Targeting of stress response pathways in the prevention and treatment of cancer. Biotechnol Adv 2018;36:583-602.

85. Tsoupras A, Lordan R, Zabetakis I. Inflammation, not cholesterol, is a cause of chronic disease. Nutrients 2018;10:604.

86. Pein M, Insua-Rodríguez J, Hongu T, Riedel A, Meier J, et al. Metastasis-initiating cells induce and exploit a fibroblast niche to fuel malignant colonization of the lungs. Nat Commun 2020;11:1494.

87. Beckwith JB, Kiviat NB, Bonadio JF. Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’ tumor. Pediat Pathol 1990;10:1-36.

88. Coorens THH, Treger TD, Al-Saadi R, Moore L, Tran MGB, et al. Embryonal precursrs of Wilms tumor. Science 2019;366:1247-51.

89. Thomas ET, Del Mar C, Glasziou P, Wright G, Barratt A, et al. Prevalence of incidental breast cancer and precursor lesions in autopsy studies: a systematic review and meta-analysis. BMC Cancer 2017;17:808.

90. Zill OA, Banks KC, Fairclough SR, Mortimer SA, Vowles JV, et al. The landscape of actionable genomic alterations in cell-free circulating tumor DNA from 21,807 advanced cancer patients. Clin Cancer Res 2018;24:3528-38.

91. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, et al. A framework for advancing our understanding of cancer- associated fibroblasts. Nature Rev Cancer 2020;20:174-86.

92. Monteran L, Erez N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front Immunol 2019;10:1835.

93. Rothlin CV, Ghosh S. Lifting the innate immune barriers to antitumor immunity. J Immunother Cancer 2020;8:e000695.

94. Sturm C, Wagner AE. Brassica-derived plant bioactives as modulators of chemopreventive and inflammatory signaling pathways. Int J Mol Sci 2017;18:1890.

95. Liang J, Jahraus B, Balta E, Ziegler JD, Hübner K, et al. Sulforaphane inhibits inflammatory responses of primary human t-cells by increasing ROS and depleting glutathione. Front Immunol 2018;9:2584.

96. Burčul F, Generalić Mekinić I, Radan M, Rollin P, Blažević I. Isothiocyanates: cholinesterase inhibiting, antioxidant, and anti-inflammatory activity. J Enzyme Inhib Med Chem 2018;33:577-82.

97. Yoo IH, Kim MJ, Kim J, Sung JJ, Park ST, et al. The anti-inflammatory effect of sulforaphane in mice with experimental autoimmune encephalomyelitis. J Korean Med Sci 2019;34:e197.

98. Wang Y, Lu J, Jiang B, Guo J. The roles of curcumin in regulating the tumor immunosuppressive microenvironment. Oncol Lett 2020;19:3059-70.

99. Marrazzo P, Angeloni C, Hrelia S. Combined treatment with three natural antioxidants enhances neuroprotection in a SH-SY5Y 3D culture model. Antioxidants (Basel) 2019;8:420.

100. Grafetstätter M, Pletsch-Borba L, Sookthai D, Karavasiloglou N, Johnson T, et al. Thrombomodulin and thrombopoietin, two biomarkers of hemostasis, are positively associated with adherence to the world cancer research fund/american institute for cancer research recommendations for cancer prevention in a population-based cross-sectional study. Nutrients 2019;11:2067.

101. Uppal S, Kaur K, Kumar R, Kaur ND, Shukla G, et al. Chitosan nanoparticles as a biocompatible and efficient nanowagon for benzyl isothiocyanate. Int J Biol Macromol 2018;115:18-28.

102. Nasery M, Abadi B, Poormoghadam D, Zarrabi A, Keyhanvar P, et al. Curcumin delivery mediated by bio-based nanoparticles: a review. Molecules 2020;25:689.

103. Liu P, Behray M, Wang Q, Wang W, Zhou Z, et al. Anti-cancer activities of allyl isothiocyanate and its conjugated silicon quantum dots. Sci Rep 2018;8:1084.

104. Lane AN, Higashi RM, Fan TW. Metabolic reprogramming in tumors: contributions of the tumor microenvironment. Genes Dis 2020;7:185-98.

105. Piskovatska V, Stefanyshyn N, Storey KB, Vaiserman AM, Lushchak O. Metformin as a geroprotector: experimental and clinical evidence. Biogerontology 2019;20:33-48.

106. Kwon Y. Food-derived polyphenols inhibit the growth of ovarian cancer cells irrespective of their ability to induce antioxidant responses. Heliyon 2018;4:e00753.

107. Lăcătuşu CM, Grigorescu ED, Floria M, Onofriescu A, Mihai BM. The mediterranean diet: From an environment-driven food culture to an emerging medical prescription. Int J Environ Res Public Health 2019;16:942.

108. D’Innocenzo S, Biagi C, Lanari M. Obesity and the mediterranean diet: a review of evidence of the role and sustainability of the mediterranean diet. Nutrients 2019;11:1306.

109. Uusitupa M, Khan TA, Viguiliouk E, Kahleova H, Rivellese AA, et al. Prevention of type 2 diabetes by lifestyle changes: a systematic review and meta-analysis. Nutrients 2019;11:2611.

110. Yagishita Y, Fahey JW, Dinkova-Kostova AT, Kensler TW. Broccoli or sulforaphane: Is it the source or dose that matters? Molecules 2019;24:3593.

111. Quirante-Moya S, García-Ibañez P, Quirante-Moya F, Villaño D, Moreno DA. The role of brassica bioactives on human health: are we studying it the right way? Molecules 2020;25:1591.

112. Phan MAT, Paterson J, Bucknall M, Arcot J. Interactions between phytochemicals from fruits and vegetables: effects on bioactivities and bioavailability. Crit Rev Food Sci Nutr 2018;58:1310-29.

113. Romeo L, Iori R, Rollin P, Bramanti P, Mazzon E. Isothiocyanates: an overview of their antimicrobial activity against human infections. Molecules 2018;23:624.

114. Pedersen BK. Regular exercise helps patients combat cancer. Scientist 2020. Available from: https://www.the-scientist.com/features/regular-exercise-helps-patients-combat-cancer-67317. [Last accessed on 29 Jul 2020].

115. Musci RV, Hamilton KL, Linden MA. Exercise-induced mitohormesis for the maintenance of skeletal muscle and healthspan extension. Sports (Basel) 2019;7:170.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/