REFERENCES
1. Ostrom QT, Gittleman H, Stetson L, Virk SM, Barnholtz-Sloan JS. Epidemiology of gliomas. Cancer Treat Res 2015;163:1-14.
2. Reni M, Mazza E, Zanon S, Gatta G, Vecht CJ. Central nervous system gliomas. Crit Rev OncolHematol 2017;113:213-34.
3. Scherer HJ. A critical review: the pathology of cerebral gliomas. J Neurol Neurosurg Psychiatry 1940;3:147-77.
4. Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006;441:1068-74.
5. Qian X, Hulit J, Suyama K, Eugenin EA, Belbin TJ, et al. P21/CIP1 mediates reciprocal switching between proliferation and invasion during metastasis. Oncogene 2013;32:2292-303.
6. Pei XH, Xiong Y. Biochemical and cellular mechanisms of mammalian CDK inhibitors: a few unresolved issues. Oncogene 2005;24:2787-95.
7. Romanov VS, Pospelov VA, Pospelova TV. Cyclin dependent kinase inhibitors (CKIs) play a crucial role in the regulation of the cell cycle in non transformed cells and are implicated in suppression of cell proliferation under stress conditions caused by growth factor deficiency. Biochemistry (Mosc) 2012;77:575-84.
8. Abbas T, Dutta A. p21 in cancer: Intricate networks and multiple activities. Nat Rev Cancer 2009;6:400-14.
9. Bertoli C, Skotheim JM, De Bruin RAM. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol 2013;14:518-28.
10. Jung YS, Qian Y, Chen X. Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal 2010;22:1003-12.
11. Mullan PB, Quinn JE, Harkin DP. The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene 2006;25:5854-63.
12. Meng XM, Chung ACK, Lan HY. Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clin Sci 2013;124:234-54.
13. Lee EW, Lee MS, Camus S, Ghim J, Yang MR, et al. Differential regulation of p53 and p21 by MKRN1 E3 ligase controls cell cycle arrest and apoptosis. EMBO J 2009;28:2100-13.
14. Xu H, Wang Z, Jin S, Hao H, Zheng L, et al. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression. BiochemBiophys Res Commun 2014;446:235-40.
15. Hydbring P, Malumbres M, Sicinski P. Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat Rev Mol Cell Biol 2016;17:280-92.
16. Wu S, CetinKaya C, Munoz-Alonso MJ, Von Der Lehr N, Bahram F, et al. Myc represses differentiation-induced p21/Cip1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogen 2003;22:351-60.
17. Choi W Il, Kim MY, Jeon BN, Koh DI, Yun CO, et al. Role of promyelocytic leukemia zinc finger (PLZF) in cell proliferation and cyclin-dependent kinase inhibitor 1A (p21WAF/CDKN1A) Gene repression. J Biol Chem 2014;289:18625-40.
18. Zeng PY, Berger SL. LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation. Cancer Res 2006;66:10701-8.
19. Lai D, Chen Y, Wang F, Jiang L, Wei C. LKB1 controls the pluripotent state of human embryonic stem cells. Cell Reprogram 2018;14:164-70.
20. Koutsodontis G, Tentes I, Papakosta P, Moustakas A, Kardassis D. Sp1 plays a critical role in the transcriptional activation of the human cyclin-dependent kinase inhibitor p21WAF1/Cip1 gene by the p53 tumor suppressor protein. J Biol Chem 2001;276:29116-25.
21. Kim HS, Heo JI, Park SH, Shin JY, Kang HJ, et al. Transcriptional activation of p21 WAF1/CIP1 is mediated by increased DNA binding activity and increased interaction between p53 and Sp1 via phosphorylation during replicative senescence of human embryonic fibroblasts. Mol Biol Rep 2014;41:2397-408.
22. Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst) 2016;42:63-71.
23. Aasland D, Götzinger L, Hauck L, Berte N, Meyer J, et al. Temozolomide induces senescence and repression of DNA repair pathways in glioblastoma cells via activation of ATR-CHK1, p21, and NF-κB. Cancer Res 2019;79:99-113.
24. Chen JF, Luo X, Xiang LS, Li HT, Zha L, et al. EZH2 promotes colorectal cancer stem-like cell expansion by activating p21/Cip1-Wnt/catenin signaling. Oncotarget 2016;7:41540-58.
25. Wen Y, Cai J, Hou Y, Huang Z, Wang Z. Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target. Oncotarget 2017;8:37974-90.
26. Fan TY, Wang H, Xiang P, Liu YW, Li HZ, et al. Inhibition of EZH2 reverses chemotherapeutic drug TMZ chemosensitivity in Glioblastoma. Int J Clin ExpPathol 2014;7:6662-70.
27. Xie Q, Wu Q, Mack SC, Yang K, Kim L, et al. CDC20 maintains tumor initiating cells. Oncotarget 2015;6:13241-54.
28. Morris-Hanon O, Furmento VA, Rodríguez-Varela MS, Mucci S, Fernandez-Espinosa DD, et al. The cell cycle inhibitors p21/Cip1 and p27Kip1 control proliferation but enhance DNA damage resistance of glioma stem cells. Neoplasia 2017;19:519-29.
29. Glaser T, Wagenknecht B, Weller M. Identification of p21 as a target of cycloheximide-mediated facilitation of CD95-mediated apoptosis in human malignant glioma cells. Oncogene 2001;20:4757-67.
30. Head RJ, Fay MF, Cosgrove L, Fung K, Rundle-Thiele D, et al. Persistence of DNA adducts, hypermutation and acquisition of cellular resistance to alkylating agents in glioblastoma. Cancer Biol Ther 2017;18:917-26.
31. Happold C, Roth P, Wick W, Schmidt N, Florea AM, et al. Distinct molecular mechanisms of acquired resistance to temozolomide in glioblastoma cells. J Neurochem 2012;122:444-55.
32. Mostofa A, Punganuru SR, Madala HR, Srivenugopal KS. S-phase specific downregulation of human O6-methylguanine DNA methyltransferase (MGMT) and its serendipitous interactions with PCNA and p21cip1 proteins in glioma cells. Neoplasia 2018;20:305-23.
33. Acunzo M, Romanoo G, Wernicke D, Croce CM. MicroRNA and cancer-a brief overview. Adv Biol Regul 2015;57:1-9.
34. Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, et al. Human glioma growth is controlled by microRNA-10b. Cancer Res 2011;71:3563-72.
35. Teplyuk NM, Uhlmann EJ, Wong AH, Karmali P, Basu M, et al. MicroRNA-10b inhibition reduces E2F1-mediated transcription and miR-15/16 activity in glioblastoma. Oncotarget 2015;6:3770-83.
36. El Fatimy R, Subramanian S, Uhlmann EJ, Krichevsky AM. Genome editing reveals glioblastoma addiction to microRNA-10b. Mol Ther 2017;25:368-78.
37. Ernst A, Campos B, Meier J, Devens F, Liesenberg F, et al. De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene 2010;29:3411-22.
38. Wu ZB, Cai L, Lin SJ, Lu JL, Yao Y, et al. The miR-92b functions as a potential oncogene by targeting on Smad3 in glioblastomas. Brain Res 2013;1529:16-25.
39. Zhong Q, Wang T, Lu P, Zhang R, Zou J, et al. miR-193b promotes cell proliferation by targeting Smad3 in human glioma. J Neurosci Res 2014;92:619-26.
40. Chen R, Liu H, Cheng Q, Jiang B, Peng R, et al. MicroRNA-93 promotes the malignant phenotypes of human glioma cells and induces their chemoresistance to temozolomide. Biol Open 2016;5:669-77.
41. Shen X, Li J, Liao W, Wang J, Chen H, et al. microRNA-149 targets caspase-2 in glioma progression. Oncotarget 2016;7:26388-99.
42. Yin D, Ogawa S, Kawamata N, Leiter A, Ham M, et al. miR-34a functions as a tumor suppressor modulating EGFR in glioblastoma multiforme. Oncogene 2013;32:1155-63.
43. Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 2008;68:9125-30.
44. Feng R, Dong L. Inhibitory effect of miR-184 on the potential of proliferation and invasion in human glioma and breast cancer cells in vitro. Int J Clin ExpPathol 2015;8:9376-82.
45. Glasgow SM, Laug D, Brawley VS, Zhang Z, Corder A, et al. The miR-223/nuclear factor I-A axis regulates glial precursor proliferation and tumorigenesis in the CNS. J Neurosci 2013;33:13560-8.
46. Xiao B, Tan L, He B, Liu Z, Xu R. MiRNA-329 targeting E2F1 inhibits cell proliferation in glioma cells. J Transl Med 2013;11:172.
47. Guo M, Jiang Z, Zhang X, Lu D, Ha AD, et al. miR-656 inhibits glioma tumorigenesis through repression of BMPR1A. Carcinogenesis 2014;35:1698-706.
48. Fang B, Zhu J, Wang Y, Geng F, Li G. MiR-454 inhibited cell proliferation of human glioblastoma cells by suppressing PDK1 expression. Biomed Pharmacother 2015;75:148-52.
49. Chen Y, Hu X, Li Y, Zhang H, Fu R, et al. Ars2 promotes cell proliferation and tumorigenicity in glioblastoma through regulating miR-6798-3p. Sci Rep 2018;8:15602.
50. Koshkin PA, Chistiakov DA, Nikitin AG, Konovalov AN, Potapov AA, et al. Analysis of expression of micrornas and genes involved in the control of key signaling mechanisms that support or inhibit development of brain tumors of different grades. Clin Chim Acta 2014;430:55-62.
51. Yang W, Yu H, Shen Y, Liu Y, Yang Z, et al. MiR-146b-5p overexpression attenuates stemness and radioresistance of glioma stem cells by targeting HuR/lincRNA-p21/B catenin pathway. Oncotarget 2016;7:41505-26.
52. Bhan A, Soleimani M, Mandai SS. Long non coding RNA and cancer: a new paradigm. Cancer Res 2017;77:3965-81.
53. Wang L, Zhengwen H. Functional roles of long non-coding RNAs (LncRNAs) in glioma stem cells. Med SciMonit 2019;25:7567-73.
54. Chi HC, Tsai CY, Tsai MM, Yeh CT, Lin KH. Roles of long noncoding RNAs in recurrence and metastasis of radiotherapy-resistant cancer stem cells. Int J Mol Sci 2017;18:1903.
55. Engreitz JM, Ollikainen N, Guttman M. Long non-coding RNAs: Spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol 2016;17:756-70.
56. Tannous BA, Teng J. Secreted blood reporters: insights and applications. BiotechnolAdv 2011;29:997-1003.
57. Kang CM, Bai HL, Li XH, Huang RY, Zhao JJ, et al. The binding of lncRNA RP11-732M18.3 with 14-3-3 β/α accelerates p21 degradation and promotes glioma growth. EBioMedicine 2019;45:58-69.
58. Lin TK, Chang CN, Tsai CS, Huang YC, Lu YJ, et al. The long non-coding RNA LOC441204 enhances cell growth in human glioma. Sci Rep 2017;7:5603.
59. Zhou XY, Liu H, Ding ZB, Xi HP, Wang GW. lncRNA SNHG16 exerts oncogenic functions in promoting proliferation of glioma through suppressing p21. Pathol Oncol Res 2020;26:1021-8.
60. Fei F, He Y, He S, He Z, Wang Y, et al. LncRNA SNHG3 enhances the malignant progress of glioma through silencing KLF2 and p21. Biosci Rep 2018;38:BSR20180420.
61. Cai G, Zhu Q, Yuan L, Lan Q. LncRNA SNHG6 acts as a prognostic factor to regulate cell proliferation in glioma through targeting p21. Biomed Pharmacother 2018;102:452-7.
62. Hu S, Xu L, Li L, Luo D, Zhao H, et al. Overexpression of lncRNA PTENP1 suppresses glioma cell proliferation and metastasis in vitro. Onco Targets Ther 2018;12:147-56.
63. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 2010;142:409-19.
64. Hall JR, Messenger ZJ, Tam HW, Phillips SL, Recio L, et al. Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Dis 2015;6:e1700.
65. Dimitrova N, Zamudio JR, Jong RM, Soukup D, Resnick R, et al. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell 2014;54:777-90.
66. Deng J, Yang M, Jiang R, An N, Wang X, et al. Long non-coding RNA HOTAIR regulates the proliferation, self-renewal capacity, tumor formation and migration of the cancer stem- like cell (CSC) subpopulation enriched from breast cancer cells. PLoS One 2017;12:e0170860.
67. Dutertre M, Lambert S, Carreira A, Amor-Guéret M, Vagner S. DNA damage: RNA-binding proteins protect from near and far. Trends BiochemSci 2014;39:141-9.
68. Wang G, Li Z, Zhao Q, Zhu Y, Zhao C, et al. LincRNA-p21 enhances the sensitivity of radiotherapy for human colorectal cancer by targeting the Wnt/β-catenin signaling pathway. Oncol Rep 2014;31:1839-45.
69. Shen Y, Liu Y, Sun T, Yang W. LincRNA-p21 knockdown enhances radiosensitivity of hypoxic tumor cells by reducing autophagy through HIF-1/Akt/mTOR/P70S6K pathway. Exp Cell Res 2017;358:188-98.
70. Bi YY, Shen G, Quan Y, Jiang W, Xu F. Long noncoding RNA FAM83H-AS1 exerts an oncogenic role in glioma through epigenetically silencing CDKN1A (p21). J Cell Physiol 2018;233:8896-907.
71. Li XS, Shen FZ, Huang LY, Hui L, Liu RH, et al. lncRNA small nucleolar RNA host gene 20 predicts poor prognosis in glioma and promotes cell proliferation by silencing P21. Onco Targets Ther 2019;12:805-14.
72. Lee HC, Kang D, Han N, Lee Y, Hwang HJ, et al. A novel long noncoding RNA Linc-ASEN represses cellular senescence through multileveled reduction of p21 expression. Cell Death Differ 2020;27:1844-61.
73. Yang J, Gan X, Tan B, Wang J, Chen Y. Corticotropin-releasing factorsuppresses glioma progression by upregulation of long non-coding RNA-p21. Life Sci 2019;216:92-100.
74. He Y, Meng XM, Huang C, Wu BM, Zhang L, et al. Long noncoding RNAs: novel insights into hepatocelluar carcinoma. Cancer Lett 2014;344:20-7.
76. Heery R, Finn SP, Cuffe S, Gray SG. Long non-coding RNAs: key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells. Cancers (Basel) 2017;9:38.
77. Huang W, Zhong Z, Luo C, Xiao Y, Li L, et al. The miR-26a/AP-2α/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma. Theranostics 2019;9:5497-516.
78. Wu P, Cai J, Chen Q, Han B, Meng X, et al. Lnc-TALC promotes O 6-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p. Nat Commun 2019;10:2045.
79. Zhang Y, Dutta A, Abounader R. The role of microRNAs in glioma initiation and progression. Front Biosci 2012;17:700-12.