REFERENCES

1. Liu Y, Franklin RB, Costello LC. Prolactin and testosterone regulation of mitochondrial zinc in prostate epithelial cells. Prostate 1997;30:26-32.

2. Costello LC, Liu Y, Franklin RB, Kennedy MC. Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells. J Biol Chem 1997;272:28875-81.

3. Costello LC, Franklin RB, Liu Y, Kennedy MC. Zinc causes a shift toward citrate at equilibrium of the m-aconitase reaction of prostate mitochondria. J Inorg Biochem 2000;78:161-5.

4. Franklin RB, Milon B, Feng P, Costello LC. Zinc and zinc transporters in normal prostate and the pathogenesis of prostate cancer. Front Biosci 2005;10:2230-9.

5. Franklin RB, Feng P, Milon B, Desouki MM, Singh KK, et al. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol Cancer 2005;4:32.

6. Desouki MM, Geradts J, Milon B, Franklin RB, Costello LC. hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands. Mol Cancer 2007;6:37.

7. Zou J, Milon BC, Desouki MM, Costello LC, Franklin RB. hZIP1 zinc transporter down-regulation in prostate cancer involves the overexpression of ras responsive element binding protein-1 (RREB-1). Prostate 2011;71:1518-24.

8. Costello LC, Franklin RB, Zou J, Feng P, Bok R, et al. Human prostate cancer ZIP1/zinc/citrate genetic/metabolic relationship in the TRAMP prostate cancer animal model. Cancer Biol Ther 2011;12:1078-84.

9. Liang JY, Liu YY, Zou J, Franklin RB, Costello LC, et al. Inhibitory effect of zinc on human prostatic carcinoma cell growth. Prostate 1999;40:200-7.

10. Carraway RE, Dobner PR. Zinc pyrithione induces ERK- and PKC-dependent necrosis distinct from TPEN-induced apoptosis in prostate cancer cells. Biochim Biophys Acta 2012;1823:544-57.

11. Hong SH, Choi YS, Cho HJ, Lee JY, Kim JC, et al. Antiproliferative effects of zinc-citrate compound on hormone refractory prostate cancer. Chin J Cancer Res 2012;24:124-9.

12. Feng P, Li TL, Guan ZX, Franklin RB, Costello LC. Effect of zinc on prostatic tumorigenicity in nude mice. Ann N Y Acad Sci 2003;1010:316-20.

13. Shah MR, Kriedt CL, Lents NH, Hoyer MK, Jamaluddin N, et al. Direct intra-tumoral injection of zinc-acetate halts tumor growth in a xenograft model of prostate cancer. J Exp Clin Cancer Res 2009;28:84.

14. Franklin RB, Zou J, Zheng Y, Naslund MJ, Costello LC. Zinc ionophore (clioquinol) inhibition of human ZIP1-deficient prostate tumor growth in the mouse ectopic xenograft model: a zinc approach for the efficacious treatment of prostate cancer. Int J Cancer Clin Res 2016;3:37.

15. Link TA, von Jagow G. Zinc ions inhibit the QP center of bovine heart mitochondrial bc1 complex by blocking a protonatable group. J Biol Chem 1995;270:25001-6.

16. Sensi SL, Yin HZ, Carriedo SG, Rao SS, Weiss JH. Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc Natl Acad Sci U S A 1999;96:2414-9.

17. Park YH, Bae HC, Kim J, Jeong SH, Yang SI, et al. Zinc oxide nanoparticles induce HIF-1alpha protein stabilization through increased reactive oxygen species generation from electron transfer chain complex III of mitochondria. J Dermatol Sci 2018;91:104-7.

18. Lorusso M, Cocco T, Sardanelli AM, Minuto M, Bonomi F, et al. Interaction of Zn2+ with the bovine-heart mitochondrial bc1 complex. Eur J Biochem 1991;197:555-61.

19. Aykin-Burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR. Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J 2009;418:29-37.

20. Wallace DC. Mitochondria and cancer. Nat Rev Cancer 2012;12:685-98.

21. Woo DK, Green PD, Santos JH, D’Souza AD, Walther Z, et al. Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APC(Min/+) mice. Am J Pathol 2012;180:24-31.

22. Copeland WC, Wachsman JT, Johnson FM, Penta JS. Mitochondrial DNA alterations in cancer. Cancer Invest 2002;20:557-69.

23. Ježek J, Cooper KF, Strich R. Reactive oxygen species and mitochondrial dynamics: the Yin and Yang of mitochondrial dysfunction and cancer progression. Antioxidants (Basel) 2018;7:13.

24. Seo YA, Lopez V, Kelleher SL. A histidine-rich motif mediates mitochondrial localization of ZnT2 to modulate mitochondrial function. Am J Physiol Cell Physiol 2011;300:C1479-89.

25. Perez DR, Sklar LA, Chigaev A. Clioquinol: to harm or heal. Pharmacol Ther 2019;199:155-63.

26. Katsuyama M, Iwata K, Ibi M, Matsuno K, Matsumoto M, et al. Clioquinol induces DNA double-strand breaks, activation of ATM, and subsequent activation of p53 signaling. Toxicology 2012;299:55-9.

27. Arbiser JL, Kraeft SK, van Leeuwen R, Hurwitz SJ, Selig M, et al. Clioquinol-zinc chelate: a candidate causative agent of subacute myelo-optic neuropathy. Mol Med 1998;4:665-70.

28. Krieger I, Cash R, Evans GW. Picolinic acid in acrodermatitis enteropathica: evidence for a disorder of tryptophan metabolism. J Pediatr Gastroenterol Nutr 1984;3:62-8.

29. Andrews GK. Regulation and function of Zip4, the acrodermatitis enteropathica gene. Biochem Soc Trans 2008;36:1242-6.

30. Wang X, Zhou B. Dietary zinc absorption: a play of Zips and ZnTs in the gut. IUBMB Life 2010;62:176-82.

31. Barrie SA, Wright JV, Pizzorno JE, Kutter E, Barron PC. Comparative absorption of zinc picolinate, zinc citrate and zinc gluconate in humans. Agents Actions 1987;21:223-8.

32. Evans GW, Johnson EC. Zinc concentration of liver and kidneys from rat pups nursing dams fed supplemented zinc dipicolinate or zinc acetate. J Nutr 1980;110:2121-4.

33. Costello LC, Franklin RB. Decreased zinc in the development and progression of malignancy: an important common relationship and potential for prevention and treatment of carcinomas. Expert Opin Ther Targets 2017;21:51-66.

34. McCarty MF, Contreras F. Increasing superoxide production and the labile iron pool in tumor cells may sensitize them to extracellular ascorbate. Front Oncol 2014;4:249.

35. Ranzato E, Biffo S, Burlando B. Selective ascorbate toxicity in malignant mesothelioma: a redox Trojan mechanism. Am J Respir Cell Mol Biol 2011;44:108-17.

36. Lord-Fontaine S, Averill DA. Enhancement of cytotoxicity of hydrogen peroxide by hyperthermia in chinese hamster ovary cells: role of antioxidant defenses. Arch Biochem Biophys 1999;363:283-95.

37. Lord-Fontaine S, Averill-Bates DA. Heat shock inactivates cellular antioxidant defenses against hydrogen peroxide: protection by glucose. Free Radic Biol Med 2002;32:752-65.

38. Razavi R, Harrison LE. Thermal sensitization using induced oxidative stress decreases tumor growth in an in vivo model of hyperthermic intraperitoneal perfusion. Ann Surg Oncol 2010;17:304-11.

39. Venkataraman S, Wagner BA, Jiang X, Wang HP, Schafer FQ, et al. Overexpression of manganese superoxide dismutase promotes the survival of prostate cancer cells exposed to hyperthermia. Free Radic Res 2004;38:1119-32.

40. McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J, et al. Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem 2008;283:22700-8.

41. Hur H, Xuan Y, Kim YB, Lee G, Shim W, et al. Expression of pyruvate dehydrogenase kinase-1 in gastric cancer as a potential therapeutic target. Int J Oncol 2013;42:44-54.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/