REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69:7-34.

2. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin 2019;69:363-85.

3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.

4. Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, et al. NCCN guidelines insights: non-small cell lung cancer, Version 4.2016. J Natl Compr Canc Netw 2016;14:255-64.

5. Masters GA, Temin S, Azzoli CG, Giaccone G, Baker S Jr, et al. Systemic therapy for stage IV non-small-cell lung cancer: american society of clinical oncology clinical practice guideline update. J Clin Oncol 2015;33:3488-515.

6. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature 2018;553:446-54.

7. Jonna S, Subramaniam DS. Molecular diagnostics and targeted therapies in non-small cell lung cancer (NSCLC): an update. Discov Med 2019;27:167-70.

8. Chan BA, Hughes BG. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res 2015;4:36-54.

9. Giri A, Walia SS, Gajra A. Clinical trials investigating immune checkpoint inhibitors in non-small-cell lung cancer. Rev Recent Clin Trials 2016;11:297-305.

10. Meng X, Liu Y, Zhang J, Teng F, Xing L, et al. PD-1/PD-L1 checkpoint blockades in non-small cell lung cancer: New development and challenges. Cancer Lett 2017;405:29-37.

11. Ramamurthy C, Godwin JL, Borghaei H. Immune checkpoint inhibitor therapy: what line of therapy and how to choose? Curr Treat Options Oncol 2017;18:33.

12. Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 2018;50:165.

13. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med 2017;376:2415-26.

14. Santana-Davila R, Chow LQ. The use of combination immunotherapies as front-line therapy for non-small-cell lung cancer. Future Oncol 2018;14:191-4.

15. Gettinger S, Rizvi NA, Chow LQ, Borghaei H, Brahmer J, et al. Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol 2016;34:2980-7.

16. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823-33.

17. Remon J, Besse B, Soria JC. Successes and failures: what did we learn from recent first-line treatment immunotherapy trials in non-small cell lung cancer? BMC Med 2017;15:55.

18. Breimer LH, Nousios P, Olsson L, Brunnstrom H. Immune checkpoint inhibitors of the PD-1/PD-L1-axis in non-small cell lung cancer: promise, controversies and ambiguities in the novel treatment paradigm. Scand J Clin Lab Invest 2020; doi: 10.1080/00365513.2020.1742369.

19. Hendriks LE, Rouleau E, Besse B. Clinical utility of tumor mutational burden in patients with non-small cell lung cancer treated with immunotherapy. Transl Lung Cancer Res 2018;7:647-60.

20. Zarogoulidis P, Papadopoulos V, Maragouli E, Papatsibas G, Sardeli C, et al. Nivolumab as first-line treatment in non-small cell lung cancer patients-key factors: tumor mutation burden and PD-L1 >/=50. Transl Lung Cancer Res 2018;7:S28-30.

21. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gumus M, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med 2018;379:2040-51.

22. Gridelli C, Casaluce F. The combination strategies will be ready the right first-line choice for squamous lung cancer patients? Transl Lung Cancer Res 2018;7:S349-51.

23. Passiglia F, Bironzo P, Scagliotti GV. First-line immune-chemotherapy combination: the right strategy to fight squamous non-small cell lung cancer? Transl Lung Cancer Res 2019;8:546-9.

24. Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 2018;378:2078-92.

25. Garon EB. Cancer immunotherapy trials not immune from imprecise selection of patients. N Engl J Med 2017;376:2483-5.

26. Emens LA, Middleton G. The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol Res 2015;3:436-43.

27. Salemi LM, Loureiro SO, Schild-Poulter C. Characterization of RanBPM molecular determinants that control its subcellular localization. PLoS One 2015;10:e0117655.

28. Francis O, Han F, Adams JC. Molecular phylogeny of a RING E3 ubiquitin ligase, conserved in eukaryotic cells and dominated by homologous components, the muskelin/RanBPM/CTLH complex. PLoS One 2013;8:e75217.

29. Tomastikova E, Cenklova V, Kohoutova L, Petrovska B, Vachova L, et al. Interactions of an arabidopsis RanBPM homologue with LisH-CTLH domain proteins revealed high conservation of CTLH complexes in eukaryotes. BMC Plant Biol 2012;12:83.

30. Salemi LM, Maitland MER, McTavish CJ, Schild-Poulter C. Cell signalling pathway regulation by RanBPM: molecular insights and disease implications. Open Biol 2017;7.

31. Lampert F, Stafa D, Goga A, Soste MV, Gilberto S, et al. The multi-subunit GID/CTLH E3 ubiquitin ligase promotes cell proliferation and targets the transcription factor Hbp1 for degradation. Elife 2018;7.

32. Maitland MER, Onea G, Chiasson CA, Wang X, Ma J, et al. The mammalian CTLH complex is an E3 ubiquitin ligase that targets its subunit muskelin for degradation. Sci Rep 2019;9:9864.

33. Qiao S, Langlois CR, Chrustowicz J, Sherpa D, Karayel O, et al. Interconversion between anticipatory and active GID E3 ubiquitin ligase conformations via metabolically driven substrate receptor assembly. Mol Cell 2019; doi: 10.1016/j.molcel.2019.10.009.

34. Huffman N, Palmieri D, Coppola V. The CTLH complex in cancer cell plasticity. J Oncol 2019;2019:13.

35. Puverel S, Barrick C, Dolci S, Coppola V, Tessarollo L. RanBPM is essential for mouse spermatogenesis and oogenesis. Development 2011;138:2511-21.

36. Palavicini JP, Lloyd BN, Hayes CD, Bianchi E, Kang DE, et al. RanBP9 plays a critical role in neonatal brain development in mice. PLoS One 2013;8:e66908.

37. Palavicini JP, Wang H, Bianchi E, Xu S, Rao JS, et al. RanBP9 aggravates synaptic damage in the mouse brain and is inversely correlated to spinophilin levels in Alzheimer’s brain synaptosomes. Cell Death Dis 2013;4:e667.

38. Palavicini JP, Wang H, Minond D, Bianchi E, Xu S, et al. RanBP9 overexpression down-regulates phospho-cofilin, causes early synaptic deficits and impaired learning, and accelerates accumulation of amyloid plaques in the mouse brain. J Alzheimers Dis 2014;39:727-40.

39. Wang R, Palavicini JP, Wang H, Maiti P, Bianchi E, et al. RanBP9 overexpression accelerates loss of dendritic spines in a mouse model of Alzheimer’s disease. Neurobiol Dis 2014;69:169-79.

40. Atabakhsh E, Bryce DM, Lefebvre KJ, Schild-Poulter C. RanBPM has proapoptotic activities that regulate cell death pathways in response to DNA damage. Mol Cancer Res 2009;7:1962-72.

41. Liu T, Roh SE, Woo JA, Ryu H, Kang DE. Cooperative role of RanBP9 and P73 in mitochondria-mediated apoptosis. Cell Death Dis 2013;4:e476.

42. Kramer S, Ozaki T, Miyazaki K, Kato C, Hanamoto T, et al. Protein stability and function of p73 are modulated by a physical interaction with RanBPM in mammalian cultured cells. Oncogene 2005;24:938-44.

43. Suresh B, Ramakrishna S, Kim YS, Kim SM, Kim MS, et al. Stability and function of mammalian lethal giant larvae-1 oncoprotein are regulated by the scaffolding protein RanBPM. J Biol Chem 2010;285:35340-9.

44. Shao S, Sun PH, Satherley LK, Gao X, Ji KE, et al. Reduced RanBPM expression is associated with distant metastasis in gastric cancer and chemoresistance. Anticancer Res 2016;36:1295-303.

45. Qin C, Zhang Q, Wu G. RANBP9 suppresses tumor proliferation in colorectal cancer. Oncol Lett 2019;17:4409-16.

46. Yin YX, Sun ZP, Huang SH, Zhao L, Geng Z, et al. RanBPM contributes to TrkB signaling and regulates brain-derived neurotrophic factor-induced neuronal morphogenesis and survival. J Neurochem 2010;114:110-21.

47. Wang D, Li Z, Schoen SR, Messing EM, Wu G. A novel MET-interacting protein shares high sequence similarity with RanBPM, but fails to stimulate MET-induced Ras/Erk signaling. Biochem Biophys Res Commun 2004;313:320-6.

48. Yuan Y, Fu C, Chen H, Wang X, Deng W, et al. The Ran binding protein RanBPM interacts with TrkA receptor. Neurosci Lett 2006;407:26-31.

49. Cheng L, Lemmon S, Lemmon V. RanBPM is an L1-interacting protein that regulates L1-mediated mitogen-activated protein kinase activation. J Neurochem 2005;94:1102-10.

50. Tessari A, Parbhoo K, Pawlikowski M, Fassan M, Rulli E, et al. RANBP9 affects cancer cells response to genotoxic stress and its overexpression is associated with worse response to platinum in NSCLC patients. Oncogene 2018; doi: 10.1038/s41388-018-0424-8.

51. Zhao Z, Cheng S, Zabkiewicz C, Chen J, Zhang L, et al. Reduced expression of RanBPM is associated with poorer survival from lung cancer and increased proliferation and invasion of lung cancer cells in vitro. Anticancer Res 2017;37:4389-97.

52. Zhu LL, Wang CH, Yang HP, Shu WH. Expression of cartilage antitumor component RanBP9 in osteosarcoma. J Biol Regul Homeost Agents 2016;30:103-10.

53. Liu H, Ding J, Kohnlein K, Urban N, Ori A, et al. The GID ubiquitin ligase complex is a regulator of AMPK activity and organismal lifespan. Autophagy 2019; doi: 10.1080/15548627.2019.1695399:1-17.

54. Bao J, Tang C, Li J, Zhang Y, Bhetwal BP, et al. RAN-binding protein 9 is involved in alternative splicing and is critical for male germ cell development and male fertility. PLoS Genet 2014;10:e1004825.

55. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007;316:1160-6.

56. Palmieri D, Scarpa M, Tessari A, Uka R, Amari F, et al. Ran binding protein 9 (RanBP9) is a novel mediator of cellular DNA damage response in lung cancer cells. Oncotarget 2016;7:18371-83.

57. DeWeirdt PC, Sanson KR, Hanna RE, Hegde M, Sangree AK, et al. Genetic screens in isogenic mammalian cell lines without single cell cloning. bioRxiv 2019; doi: 10.1101/677385:677385.

58. Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer 2016;16:110-20.

59. Abbotts R, Topper MJ, Biondi C, Fontaine D, Goswami R, et al. DNA methyltransferase inhibitors induce a BRCAness phenotype that sensitizes NSCLC to PARP inhibitor and ionizing radiation. Proc Natl Acad Sci U S A 2019;116:22609-18.

60. Pilie PG, Gay CM, Byers LA, O’Connor MJ, Yap TA. PARP inhibitors: extending benefit beyond BRCA-mutant cancers. Clin Cancer Res 2019;25:3759-71.

61. Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell 2016;165:535-50.

62. Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 2012;13:227-32.

63. Cui W, Fowlis DJ, Bryson S, Duffie E, Ireland H, et al. TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 1996;86:531-42.

64. Roberts AB, Wakefield LM. The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A 2003;100:8621-3.

65. Lane DP. Cancer. p53, guardian of the genome. Nature 1992;358:15-6.

66. Palmieri D, Tessari A, Coppola V. Scorpins in the DNA damage response. Int J Mol Sci 2018;19.

67. Hosono K, Noda S, Shimizu A, Nakanishi N, Ohtsubo M, et al. YPEL5 protein of the YPEL gene family is involved in the cell cycle progression by interacting with two distinct proteins RanBPM and RanBP10. Genomics 2010;96:102-11.

68. Denti S, Sirri A, Cheli A, Rogge L, Innamorati G, et al. RanBPM is a phosphoprotein that associates with the plasma membrane and interacts with the integrin LFA-1. J Biol Chem 2004;279:13027-34.

69. Coffill CR, Muller PA, Oh HK, Neo SP, Hogue KA, et al. Mutant p53 interactome identifies nardilysin as a p53R273H-specific binding partner that promotes invasion. EMBO Rep 2012;13:638-44.

70. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997;387:296-9.

71. Domingues SC, Konietzko U, Henriques AG, Rebelo S, Fardilha M, et al. RanBP9 modulates AICD localization and transcriptional activity via direct interaction with Tip60. J Alzheimers Dis 2014;42:1415-33.

72. Ikura M, Furuya K, Fukuto A, Matsuda R, Adachi J, et al. Coordinated Regulation of TIP60 and Poly(ADP-Ribose) Polymerase 1 in damaged-chromatin dynamics. Mol Cell Biol 2016;36:1595-607.

73. Ikura M, Furuya K, Matsuda S, Matsuda R, Shima H, et al. Acetylation of histone H2AX at Lys 5 by the TIP60 histone acetyltransferase complex is essential for the dynamic binding of NBS1 to damaged chromatin. Mol Cell Biol 2015;35:4147-57.

74. Kaidi A, Jackson SP. Retraction note: KAT5 tyrosine phosphorylation couples chromatin sensing to ATM signalling. Nature 2019;568:576.

75. Legube G, Linares LK, Tyteca S, Caron C, Scheffner M, et al. Role of the histone acetyl transferase Tip60 in the p53 pathway. J Biol Chem 2004;279:44825-33.

76. Tang Y, Luo J, Zhang W, Gu W. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 2006;24:827-39.

77. Wang Y, Marion Schneider E, Li X, Duttenhofer I, Debatin K, et al. HIPK2 associates with RanBPM. Biochem Biophys Res Commun 2002;297:148-53.

78. Hofmann TG, Glas C, Bitomsky N. HIPK2: a tumour suppressor that controls DNA damage-induced cell fate and cytokinesis. Bioessays 2013;35:55-64.

79. Winter M, Sombroek D, Dauth I, Moehlenbrink J, Scheuermann K, et al. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. Nat Cell Biol 2008;10:812-24.

80. Meyer I, Kunert S, Schwiebert S, Hagedorn I, Italiano JE Jr, et al. Altered microtubule equilibrium and impaired thrombus stability in mice lacking RanBP10. Blood 2012;120:3594-602.

81. Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, et al. Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol Cell 2012;46:212-25.

82. Pines A, Kelstrup CD, Vrouwe MG, Puigvert JC, Typas D, et al. Global phosphoproteome profiling reveals unanticipated networks responsive to cisplatin treatment of embryonic stem cells. Mol Cell Biol 2011;31:4964-77.

83. Elia AE, Boardman AP, Wang DC, Huttlin EL, Everley RA, et al. Quantitative Proteomic Atlas of Ubiquitination and Acetylation in the DNA Damage Response. Mol Cell 2015;59:867-81.

84. Soliman SHA, Stark AE, Gardner ML, Harshman SW, Breece CC, et al. Tagging enhances histochemical and biochemical detection of ran binding protein 9 in vivo and reveals its interaction with Nucleolin. Sci Rep 2020;10:7138.

85. Das S, Suresh B, Kim HH, Ramakrishna S. RanBPM: a potential therapeutic target for modulating diverse physiological disorders. Drug Discov Today 2017; doi: 10.1016/j.drudis.2017.08.005.

86. Havugimana PC, Hart GT, Nepusz T, Yang H, Turinsky AL, et al. A census of human soluble protein complexes. Cell 2012;150:1068-81.

87. Lisby M, Rothstein R. Choreography of recombination proteins during the DNA damage response. DNA Repair (Amst) 2009;8:1068-76.

88. Lisby M, Barlow JH, Burgess RC, Rothstein R. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 2004;118:699-713.

89. Polo SE. Reshaping chromatin after DNA damage: the choreography of histone proteins. J Mol Biol 2015;427:626-36.

90. Jacquet K, Fradet-Turcotte A, Avvakumov N, Lambert JP, Roques C, et al. The TIP60 complex regulates bivalent chromatin recognition by 53BP1 through direct H4K20me binding and H2AK15 acetylation. Mol Cell 2016;62:409-21.

91. Mogi A, Kuwano H. TP53 mutations in nonsmall cell lung cancer. J Biomed Biotechnol 2011;2011:583929.

92. Simabuco FM, Morale MG, Pavan ICB, Morelli AP, Silva FR, et al. p53 and metabolism: from mechanism to therapeutics. Oncotarget 2018;9:23780-823.

93. Liu J, Zhang C, Hu W, Feng Z. Tumor suppressor p53 and metabolism. J Mol Cell Biol 2019;11:284-92.

94. Kim J, Yu L, Chen W, Xu Y, Wu M, et al. Wild-Type p53 promotes cancer metabolic switch by inducing PUMA-dependent suppression of oxidative phosphorylation. Cancer Cell 2019;35:191-203.e8.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/