1. Siegel RL, Jemal A, Wender RC, Gansler T, Ma J, et al. An assessment of progress in cancer control. CA Cancer J Clin 2018;68:329-39.

2. Rathkopf DE, Antonarakis ES, Shore ND, Tutrone RF, Alumkal JJ, et al. Safety and antitumor activity of apalutamide (ARN-509) in metastatic castration-resistant prostate cancer with and without prior abiraterone acetate and prednisone. Clin Cancer Res 2017;23:3544-51.

3. Rathkopf DE, Smith MR, Ryan CJ, Berry WR, Shore ND, et al. Androgen receptor mutations in patients with castration-resistant prostate cancer treated with apalutamide. Ann Oncol 2017;28:2264-71.

4. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012;367:1187-97.

5. Zhou CK, Check DP, Lortet-Tieulent J, Laversanne M, Jemal A, et al. Prostate cancer incidence in 43 populations worldwide: an analysis of time trends overall and by age group. Int J Cancer 2016;138:1388-400.

6. Berish RB, Ali AN, Telmer PG, Ronald JA, Leong HS. Translational models of prostate cancer bone metastasis. Nat Rev Urol 2018;15:403-21.

7. Clarke NW, Hart CA, Brown MD. Molecular mechanisms of metastasis in prostate cancer. Asian J Androl 2009;11:57-67.

8. Yoshida T, Kinoshita H, Taniguchi H, Yanishi M, Sugi M, et al. A randomized, open-label, controlled trial of monthly oral minodronate or semiannual subcutaneous injection of denosumab for bone loss by androgen deprivation in Asian men with prostate cancer: the prevention of osteopenia with minodronate and denosumab (PROMADE) study. Osteoporos Int 2020;31:1251-9.

9. Deantoni CL, Fodor A, Cozzarini C, Fiorino C, Brombin C, et al. Prostate cancer with low burden skeletal disease at diagnosis: outcome of concomitant radiotherapy on primary tumor and metastases. Br J Radiol 2020;93:20190353.

10. DiNatale A, Fatatis A. The bone microenvironment in prostate cancer metastasis. Adv Exp Med Biol 2019;1210:171-84.

11. Wang L, Xu M, Kao CY, Tsai SY, Tsai MJ. Small molecule JQ1 promotes prostate cancer invasion via BET-independent inactivation of FOXA1. J Clin Invest 2020;130:1782-92.

12. Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 2017;355:78-83.

13. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 2017;355:84-8.

14. Jaratlerdsiri W, Chan EKF, Gong T, Petersen DC, Kalsbeek AMF, et al. Whole-genome sequencing reveals elevated tumor mutational burden and initiating driver mutations in african men with treatment-naive, high-risk prostate cancer. Cancer Res 2018;78:6736-46.

15. Zolotovskaia MA, Sorokin MI, Petrov IV, Poddubskaya EV, Moiseev AA, et al. Disparity between inter-patient molecular heterogeneity and repertoires of target drugs used for different types of cancer in clinical oncology. Int J Mol Sci 2020;21.

16. Su X, Long Q, Bo J, Shi Y, Zhao LN, et al. Mutational and transcriptomic landscapes of a rare human prostate basal cell carcinoma. Prostate 2020;80:508-17.

17. Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 2005;115:1503-21.

18. Schrecengost RS, Dean JL, Goodwin JF, Schiewer MJ, Urban MW, et al. USP22 regulates oncogenic signaling pathways to drive lethal cancer progression. Cancer Res 2014;74:272-86.

19. McCann JJ, Vasilevskaya IA, Poudel Neupane N, Shafi AA, McNair C, et al. USP22 functions as an oncogenic driver in prostate cancer by regulating cell proliferation and DNA Repair. Cancer Res 2020;80:430-43.

20. Pfoh R, Lacdao IK, Georges AA, Capar A, Zheng H, et al. Crystal structure of USP7 ubiquitin-like domains with an ICP0 peptide reveals a novel mechanism used by viral and cellular proteins to target USP7. PLoS Pathog 2015;11:e1004950.

21. Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009;78:363-97.

22. Sahtoe DD, Sixma TK. Layers of DUB regulation. Trends Biochem Sci 2015;40:456-67.

23. Espinosa JM. Histone H2B ubiquitination: the cancer connection. Genes Dev 2008;22:2743-9.

24. Poondla N, Chandrasekaran AP, Kim KS, Ramakrishna S. Deubiquitinating enzymes as cancer biomarkers: new therapeutic opportunities? BMB Rep 2019;52:181-9.

25. Melo-Cardenas J, Zhang Y, Zhang DD, Fang D. Ubiquitin-specific peptidase 22 functions and its involvement in disease. Oncotarget 2016;7:44848-56.

26. Fraile JM, Quesada V, Rodriguez D, Freije JM, Lopez-Otin C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 2012;31:2373-88.

27. Atanassov BS, Evrard YA, Multani AS, Zhang Z, Tora L, et al. Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance. Mol Cell 2009;35:352-64.

28. Ramachandran S, Haddad D, Li C, Le MX, Ling AK, et al. The SAGA Deubiquitination Module Promotes DNA Repair and Class Switch Recombination through ATM and DNAPK-Mediated gammaH2AX Formation. Cell Rep 2016;15:1554-65.

29. Armour SM, Bennett EJ, Braun CR, Zhang XY, McMahon SB, et al. A high-confidence interaction map identifies SIRT1 as a mediator of acetylation of USP22 and the SAGA coactivator complex. Mol Cell Biol 2013;33:1487-502.

30. Young MJ, Hsu KC, Lin TE, Chang WC, Hung JJ. The role of ubiquitin-specific peptidases in cancer progression. J Biomed Sci 2019;26:42.

31. Zhang Y, Yao L, Zhang X, Ji H, Wang L, et al. Elevated expression of USP22 in correlation with poor prognosis in patients with invasive breast cancer. J Cancer Res Clin Oncol 2011;137:1245-53.

32. Daniel JA, Grant PA. Multi-tasking on chromatin with the SAGA coactivator complexes. Mutat Res 2007;618:135-48.

33. Koehler C, Bonnet J, Stierle M, Romier C, Devys D, et al. DNA binding by Sgf11 protein affects histone H2B deubiquitination by Spt-Ada-Gcn5-acetyltransferase (SAGA). J Biol Chem 2014;289:8989-99.

34. Henry KW, Wyce A, Lo WS, Duggan LJ, Emre NC, et al. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 2003;17:2648-63.

35. Henry KW, Berger SL. Trans-tail histone modifications: wedge or bridge? Nat Struct Biol 2002;9:565-6.

36. Zhao Y, Lang G, Ito S, Bonnet J, Metzger E, et al. A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol Cell 2008;29:92-101.

37. Ao N, Liu Y, Feng H, Bian X, Li Z, et al. Ubiquitin-specific peptidase USP22 negatively regulates the STAT signaling pathway by deubiquitinating SIRT1. Cell Physiol Biochem 2014;33:1863-75.

38. Lin Z, Yang H, Kong Q, Li J, Lee SM, et al. USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development. Mol Cell 2012;46:484-94.

39. Kobayashi T, Iwamoto Y, Takashima K, Isomura A, Kosodo Y, et al. Deubiquitinating enzymes regulate Hes1 stability and neuronal differentiation. FEBS J 2015;282:2411-23.

40. Gao Y, Lin F, Xu P, Nie J, Chen Z, et al. USP22 is a positive regulator of NFATc2 on promoting IL2 expression. FEBS Lett 2014;588:878-83.

41. Xiao H, Tian Y, Yang Y, Hu F, Xie X, et al. USP22 acts as an oncogene by regulating the stability of cyclooxygenase-2 in non-small cell lung cancer. Biochem Biophys Res Commun 2015;460:703-8.

42. Wilson MA, Koutelou E, Hirsch C, Akdemir K, Schibler A, et al. Ubp8 and SAGA regulate Snf1 AMP kinase activity. Mol Cell Biol 2011;31:3126-35.

43. Kim D, Hong A, Park HI, Shin WH, Yoo L, et al. Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells. J Cell Physiol 2017;232:3664-76.

44. Atanassov BS, Dent SY. USP22 regulates cell proliferation by deubiquitinating the transcriptional regulator FBP1. EMBO Rep 2011;12:924-30.

45. Li C, Irrazabal T, So CC, Berru M, Du L, et al. The H2B deubiquitinase Usp22 promotes antibody class switch recombination by facilitating non-homologous end joining. Nat Commun 2018;9:1006.

46. Xiong J, Che X, Li X, Yu H, Gong Z, et al. Cloning and characterization of the human USP22 gene promoter. PLoS One 2012;7:e52716.

47. Xiong J, Zhou X, Gong Z, Wang T, Zhang C, et al. PKA/CREB regulates the constitutive promoter activity of the USP22 gene. Oncol Rep 2015;33:1505-11.

48. Gennaro VJ, Stanek TJ, Peck AR, Sun Y, Wang F, et al. Control of CCND1 ubiquitylation by the catalytic SAGA subunit USP22 is essential for cell cycle progression through G1 in cancer cells. Proc Natl Acad Sci U S A 2018;115:E9298-307.

49. Piao S, Liu Y, Hu J, Guo F, Ma J, et al. USP22 is useful as a novel molecular marker for predicting disease progression and patient prognosis of oral squamous cell carcinoma. PLoS One 2012;7:e42540.

50. Hu J, Liu YL, Piao SL, Yang DD, Yang YM, et al. Expression patterns of USP22 and potential targets BMI-1, PTEN, p-AKT in non-small-cell lung cancer. Lung Cancer 2012;77:593-9.

51. Yang M, Liu YD, Wang YY, Liu TB, Ge TT, et al. Ubiquitin-specific protease 22: a novel molecular biomarker in cervical cancer prognosis and therapeutics. Tumour Biol 2014;35:929-34.

52. Wang A, Ning Z, Lu C, Gao W, Liang J, et al. USP22 induces cisplatin resistance in lung adenocarcinoma by regulating gammaH2AX-mediated DNA damage repair and Ku70/Bax-mediated apoptosis. Front Pharmacol 2017;8:274.

53. Liu YL, Yang YM, Xu H, Dong XS. Aberrant expression of USP22 is associated with liver metastasis and poor prognosis of colorectal cancer. J Surg Oncol 2011;103:283-9.

54. Lang G, Bonnet J, Umlauf D, Karmodiya K, Koffler J, et al. The tightly controlled deubiquitination activity of the human SAGA complex differentially modifies distinct gene regulatory elements. Mol Cell Biol 2011;31:3734-44.

55. Zhang K, Yang L, Wang J, Sun T, Guo Y, et al. Ubiquitin-specific protease 22 is critical to in vivo angiogenesis, growth and metastasis of non-small cell lung cancer. Cell Commun Signal 2019;17:167.

56. Lin Z, Tan C, Qiu Q, Kong S, Yang H, et al. Ubiquitin-specific protease 22 is a deubiquitinase of CCNB1. Cell Discov 2015;1.

57. Ma Y, Fu HL, Wang Z, Huang H, Ni J, et al. USP22 maintains gastric cancer stem cell stemness and promotes gastric cancer progression by stabilizing BMI1 protein. Oncotarget 2017;8:33329-42.

58. Qiu GZ, Liu Q, Wang XG, Xu GZ, Zhao T, et al. Hypoxia-induced USP22-BMI1 axis promotes the stemness and malignancy of glioma stem cells via regulation of HIF-1alpha. Life Sci 2020;247:117438.

59. Ning J, Zhang J, Liu W, Lang Y, Xue Y, et al. Overexpression of ubiquitin-specific protease 22 predicts poor survival in patients with early-stage non-small cell lung cancer. Eur J Histochem 2012;56:e46.

60. Liang JX, Ning Z, Gao W, Ling J, Wang AM, et al. Ubiquitinspecific protease 22induced autophagy is correlated with poor prognosis of pancreatic cancer. Oncol Rep 2014;32:2726-34.

61. Kosinsky RL, Helms M, Zerche M, Wohn L, Dyas A, et al. USP22-dependent HSP90AB1 expression promotes resistance to HSP90 inhibition in mammary and colorectal cancer. Cell Death Dis 2019;10:911.

62. Yang DD, Cui BB, Sun LY, Zheng HQ, Huang Q, et al. The co-expression of USP22 and BMI-1 may promote cancer progression and predict therapy failure in gastric carcinoma. Cell Biochem Biophys 2011;61:703-10.

63. Yuan X, Wang H, Xu A, Zhu X, Zhan Y, et al. Ubiquitin-specific peptidase 22 promotes proliferation and metastasis in human colon cancer. Oncol Lett 2019;18:5567-76.

64. Tang B, Tang F, Li B, Yuan S, Xu Q, et al. High USP22 expression indicates poor prognosis in hepatocellular carcinoma. Oncotarget 2015;6:12654-67.

65. Wang H, Li YP, Chen JH, Yuan SF, Wang L, et al. Prognostic significance of USP22 as an oncogene in papillary thyroid carcinoma. Tumour Biol 2013;34:1635-9.

66. Hong A, Lee JE, Chung KC. Ubiquitin-specific protease 22 (USP22) positively regulates RCAN1 protein levels through RCAN1 de-ubiquitination. J Cell Physiol 2015;230:1651-60.

67. Zhou D, Liu P, Sun DW, Chen ZJ, Hu J, et al. USP22 down-regulation facilitates human retinoblastoma cell aging and apoptosis via inhibiting TERT/P53 pathway. Eur Rev Med Pharmacol Sci 2017;21:2785-92.

68. Melo-Cardenas J, Xu Y, Wei J, Tan C, Kong S, et al. USP22 deficiency leads to myeloid leukemia upon oncogenic Kras activation through a PU.1-dependent mechanism. Blood 2018;132:423-34.

69. Kosinsky RL, Zerche M, Saul D, Wang X, Wohn L, et al. USP22 exerts tumor-suppressive functions in colorectal cancer by decreasing mTOR activity. Cell Death Differ 2020;27:1328-40.

70. Cato L, de Tribolet-Hardy J, Lee I, Rottenberg JT, Coleman I, et al. ARv7 represses tumor-suppressor genes in castration-resistant prostate cancer. Cancer Cell 2019;35:401-13.e6.

71. Sharp A, Coleman I, Yuan W, Sprenger C, Dolling D, et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J Clin Invest 2019;129:192-208.

72. Abida W, Cyrta J, Heller G, Prandi D, Armenia J, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci U S A 2019;116:11428-36.

73. Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, et al. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 2001;61:5974-8.

74. Holzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, et al. Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol 2004;164:217-27.

75. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012;487:239-43.

76. Nelson WG, De Marzo AM, Yegnasubramanian S. USP2a activation of MYC in prostate cancer. Cancer Discov 2012;2:206-7.

77. Priolo C, Tang D, Brahamandan M, Benassi B, Sicinska E, et al. The isopeptidase USP2a protects human prostate cancer from apoptosis. Cancer Res 2006;66:8625-32.

78. Morra F, Merolla F, Napolitano V, Ilardi G, Miro C, et al. The combined effect of USP7 inhibitors and PARP inhibitors in hormone-sensitive and castration-resistant prostate cancer cells. Oncotarget 2017;8:31815-29.

79. Wang Z, Kang W, You Y, Pang J, Ren H, et al. USP7: novel drug target in cancer therapy. Front Pharmacol 2019;10:427.

80. Lu Y, Bedard N, Chevalier S, Wing SS. Identification of distinctive patterns of USP19-mediated growth regulation in normal and malignant cells. PLoS One 2011;6:e15936.

81. Chu IM, Hengst L, Slingerland JM. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 2008;8:253-67.

82. McClurg UL, Azizyan M, Dransfield DT, Namdev N, Chit N, et al. The novel anti-androgen candidate galeterone targets deubiquitinating enzymes, USP12 and USP46, to control prostate cancer growth and survival. Oncotarget 2018;9:24992-5007.

83. Geng L, Chen X, Zhang M, Luo Z. Ubiquitin-specific protease 14 promotes prostate cancer progression through deubiquitinating the transcriptional factor ATF2. Biochem Biophys Res Commun 2020;524:16-21.

84. Dirac AM, Bernards R. The deubiquitinating enzyme USP26 is a regulator of androgen receptor signaling. Mol Cancer Res 2010;8:844-54.

85. Guo F, Zhang C, Wang F, Zhang W, Shi X, et al. Deubiquitinating enzyme USP33 restrains docetaxel-induced apoptosis via stabilising the phosphatase DUSP1 in prostate cancer. Cell Death Differ 2019. doi: 10.1038/s41418-019-0473-8

86. Zhang J, Wang J, Luan T, Zuo Y, Chen J, et al. Deubiquitinase USP9X regulates the invasion of prostate cancer cells by regulating the ERK pathway and mitochondrial dynamics. Oncol Rep 2019;41:3292-304.

87. Zhou X, Gan L, Liu J, Xie X, Wang T, et al. Pirarubicin reduces USP22 expression by inhibiting CREB-1 phosphorylation in HeLa cells. Exp Ther Med 2019;17:4230-6.

88. de Las Pozas A, Reiner T, De Cesare V, Trost M, Perez-Stable C. Inhibiting Multiple Deubiquitinases To Reduce Androgen Receptor Expression In Prostate Cancer Cells. Sci Rep 2018;8:13146.

89. Chauhan D, Tian Z, Nicholson B, Kumar KG, Zhou B, et al. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 2012;22:345-58.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)


All published articles are preserved here permanently:


All published articles are preserved here permanently: