REFERENCES
2. Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019;144:1941-53.
3. Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA) - General Subjects 2013;1830:3670-95.
4. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2015;79:629-61.
5. Kaur V, Kumar M, Kumar A, Kaur K, Dhillon VS, Kaur S. Pharmacotherapeutic potential of phytochemicals: implications in cancer chemoprevention and future perspectives. Biomed Pharmacother 2018;97:564-86.
6. Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer T, et al. Natural products and synthetic analogs as a source of antitumor drugs. Biomolecules 2019;9:679.
7. Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites 2012;2:303-36.
8. Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 2015;14:111-29.
9. Ertl P, Schuhmann T. Cheminformatics analysis of natural product scaffolds: comparison of scaffolds produced by animals, plants, fungi and bacteria. Mol Inform 2020;39:2000017.
10. Chen Y, Kirchmair J. Cheminformatics in natural product-based drug discovery. Mol Inform 2020:2000171.
11. Chen Y, Garcia de Lomana M, Friedrich NO, Kirchmair J. Characterization of the chemical space of known and readily obtainable natural products. J Chem Inf Model 2018;58:1518-32.
12. Ntie-kang F, Nyongbela KD, Ayimele GA, Shekfeh S. “Drug-likeness” properties of natural compounds. Phys Sci Rev 2019;4.
13. Saldívar-gonzález FI, Pilón-jiménez BA, Medina-franco JL. Chemical space of naturally occurring compounds. Phys Sci Rev 2019;4.
14. Luo Y, Cobb RE, Zhao H. Recent advances in natural product discovery. Curr Opin Biotechnol 2014;30:230-7.
15. Lagunin AA, Goel RK, Gawande DY, et al. Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review. Nat Prod Rep 2014;31:1585-611.
16. Biasutto L, Mattarei A, Sassi N, et al. Improving the efficacy of plant polyphenols. Anticancer Agents Med Chem 2014;14:1332-42.
17. Grynkiewicz G, Szeja W, Krzeczyński P, Rusin A. Hexenoses in design of glycoconjugates - from chemistry to function biological activity of genistein derivatives. Chem Biol Interface 2014;4:301-20.
18. Blakemore DC, Castro L, Churcher I, et al. Organic synthesis provides opportunities to transform drug discovery. Nature Chem 2018;10:383-94.
19. Messina MA. Brief historical overview of the past two decades of soy and isoflavone research. J Nutr 2010;140:1350S-4.
20. Ko KP. Isoflavones: chemistry, analysis, functions and effects on health and cancer. Asian Pac J Cancer Prev 2014;15:7001-10.
21. Szeja W, Grynkiewicz G, Rusin A. Isoflavones, their glycosides and glycoconjugates. Synthesis and biological activity. Curr Org Chem 2017;21:218-35.
22. Venkataraman K. Flavones and isoflavones. Progr Chem Org Nat Prod 1959;17:2-69.
23. Wong E. Structural and biogenetic relationships of isoflavonoids. Progr Chem Org Nat Prod 1970;28:1-73.
24. In: Catherine A, Rice-Evans C, Lester Packer L, editors. Flavonoids in Health and Disease Second Edition. Boca Raton, FL: CRC Press; 2003.
25. In: Grotewold E, editor. The Science of Flavonoids. New York: Springer Science + Business Media; 2006.
26. In: Andersen OM, Markham KR, editors. Flavonoids Chemistry, Biochemistry and Applications. Boca Raton, FL: CRC Taylor & Francis; 2006.
27. In: Keller RB, editor. Flavonoids: Biosynthesis, Biological Effects and Dietary Sources. New York: Nova Science Publishers, Inc.; 2009.
28. Vicente O, Bosatu M. Flavonoids: antioxidant compounds for plant defence...and for a healthy human diet. Not Bot Horti Agrobo 2018;46:14-21.
30. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J 2013;2013:1-16.
31. Perez-vizcaino F, Fraga CG. Research trends in flavonoids and health. Arch Biochem Biophys 2018;646:107-12.
32. Naoumkina MA, Zhao Q, Gallego-giraldo L, Dai X, Zhao PX, Dixon RA. Genome-wide analysis of phenylpropanoid defence pathways: phenylpropanoid defence pathways. Mol Plant Pathol 2010;11:829-46.
33. Prasad S, Phromnoi K, Yadav V, Chaturvedi M, Aggarwal B. Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Med 2010;76:1044-63.
34. Procházková D, Boušová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011;82:513-23.
35. Romano B, Pagano E, Montanaro V, Fortunato AL, Milic N, Borrelli F. Novel insights into the pharmacology of flavonoids: pharmacology of flavonoids. Phytother Res 2013;27:1588-96.
36. Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines (Basel) 2018;5:93.
37. Ravishankar D, Rajora AK, Greco F, Osborn HMI. Flavonoids as prospective compounds for anti-cancer terapy. Int J Biochem Cell Biol 2013;45:2821-31.
38. Raffa D, Maggio B, Raimondi MV, Plescia F, Daidone G. Recent discoveries of anticancer flavonoids. Eur J Med Chem 2017;142:213-28.
39. Rodríguez-garcía C, Sánchez-quesada C, Gaforio JJ. Dietary flavonoids as cancer chemopreventive agents: an updated review of human studies. Antioxidants 2019;8:137.
40. Abotaleb M, Samuel S, Varghese E, et al. Flavonoids in cancer and apoptosis. Cancers 2019;11:28.
41. Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as anticancer agents. Nutrients 2020;12:457.
42. Thilakarathna S, Rupasinghe H. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 2013;5:3367-87.
43. Rodriguez-mateos A, Vauzour D, Krueger CG, et al. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 2014;88:1803-53.
44. Nicolle E, Souard F, Faure P, Boumendjel A. Flavonoids as promising lead compounds in type 2 diabetes mellitus: molecules of interest and structure-activity relationship. Curr Med Chem 2011;18:2661-72.
45. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Asp Med 2013;34:121-38.
46. Aguillón AR, Mascarello A, Segretti ND, et al. Synthetic strategies toward SGLT2 Inhibitors. Org Process Res Dev 2018;22:467-88.
47. Balentine DA, Dwyer JT, Erdman JW, et al. Recommendations on reporting requirements for flavonoids in research. Am J Clin Nutr 2015;101:1113-25.
48. Harnly J. Importance of accurate measurements in nutrition research: dietary flavonoids as a case study. Adv Nutr 2016;7:375-82.
49. Maggiora G, Vogt M, Stumpfe D, Bajorath J. Molecular similarity in medicinal chemistry miniperspective. J Med Chem 2014;57:3186-204.
50. Popelier P, Smith P. QSAR models based on quantum topological molecular similarity. Eur J Med Chem 2006;41:862-73.
51. Renner S, Schneider G. Scaffold-hopping potential of ligand-based similarity concepts. ChemMedChem 2006;1:181-5.
52. Scalbert A, Andres-lacueva C, Arita M, et al. Databases on food phytochemicals and their health-promoting effects. J Agric Food Chem 2011;59:4331-48.
53. Wishart DS, Mandal R, Stanislaus A, Ramirez-Gaona M. Cancer metabolomics and the human metabolome database. Metabolites 2016;6:10.
54. Sebastian RS, Enns CW, Goldman JD, et al. New, publically available flavonoid data products: valuable resources for emerging science. J Food Compos Anal 2017;64:68-72.
56. Adams NR. Permanent infertility in ewes exposed to plant oestrogens. Aust Vet J 1990;67:197-201.
57. Adams NR. Detection of the effects of phytoestrogens on sheep and cattle. J Anim Sci 1995;73:1509-15.
58. Jefferson WN, Patisaul HB, Williams CJ. Reproductive consequences of developmental phytoestrogen exposure. Reproduction 2012;143:247-60.
59. Douglas C, Johnson S, Arjmandi B. Soy and its isoflavones: the truth behind the science in breast cancer. Anticancer Agents Med Chem 2013;13:1178-87.
60. Zaheer K, Humayoun Akhtar M. An updated review of dietary isoflavones: nutrition, processing, bioavailability and impacts on human health. Crit Rev Food Sci Nutr 2016;57:1280-93.
62. Ososki AL, Kennelly EJ. Phytoestrogens: a review of the present state of research. Phytother Res 2003;17:845-69.
63. Hooper L, Ryder J, Kurzer M, et al. Effects of soy protein and isoflavones on circulating hormone concentrations in pre- and post-menopausal women: a systematic review and meta-analysis. Hum Reprod Update 2009;15:423-40.
64. Douglas C, Johnson S, Arjmandi B. Soy and its isoflavones: the truth behind the science in breast cancer. Anticancer Agents Med Chem 2013;13:1178-87.
65. Chae HS, Xu R, Won JY, Chin YW, Yim H. Molecular targets of genistein and its related flavonoids to exert anticancer effects. Int J Mol Sci 2019;20:2420.
66. Sacks FM, Lichtenstein A, Van Horn L, et al. Soy protein, isoflavones, and cardiovascular health. Circulation 2006;113:1034-44.
67. Ullmann U, Bendik I, Flühmann B. Bonistein (synthetic genistein) a food component in development for a bone health nutraceutical. J Physiol Pharmacol 2005;56:79-95.
70. Banecka-Majkutewicz Z, Jakóbkiewicz-Banecka J, Gabig-Cimińska M, Węgrzyn A, Węgrzyn G. Putative biological mechanism of efficiency of substrate reduction therapies for mucopolisaccharidoses. Arch Immunol Ther Exp 2012;60:461-8.
71. Ferrari SM, Antonelli A, Guidi P, et al. Genotoxicity evaluation of the soybean isoflavone genistein in human papillary thyroid cancer cells. Study of its potential use in thyroid cancer therapy. Nutr Cancer 2019;71:1335-44.
72. Rusin A, Krawczyk Z, Grynkiewicz G, et al. Synthetic derivatives of genistein, their properties and possible applications. Acta Biochim Polon 2010;57:23-34.
73. Landauer MR, Harvey AJ, Kaytor MD, Day RM. Mechanism and therapeutic window of genistein nanosuspension to protect against hematopoietic-acute radiation syndrome. J Rad Res 2019;2019:308-17.
74. Singh VK, Seed TM. Bio 300: a promising radiation countermeasure under advanced development for acute radiation syndrome and the delayed effects of acute radiation exposure. Exp Opin Investig Drugs 2020;29:429-41.