REFERENCES

1. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Neuropathol 2007;114:97-109.

2. Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY. Primary brain tumours in adults. The Lancet 2003;361:323-31.

3. Wen PY, Kesari S. Malignant gliomas in adults. New Engl J Med 2008;359:492-507.

4. Stewart DJ, Molep JM, Eapen L, et al. Cisplatin and radiation in the treatment of tumors of the central nervous system: pharmacological considerations and results of early studies. Int. J Radiat Oncol Biol Phys 1994;28:531-42.

5. Yang LJ, Zhou CF, Lin ZX. Temozolomide and radiotherapy for newly diagnosed glioblastoma multiforme: a systematic review. Cancer Investig 2014;32:31-6.

6. Miranda A, Blanco-Prieto M, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part 1: molecular pathways and novel treatment approaches. Int J Pharm 2017;531:372-88.

7. Bouzinab K, Summers H, Zhang J, et al. In serach of effective therapies to overcome resistance to temozolomide in brain tumors. Cancer Drug Resist 2019;2:1018-31.

8. Quirk BJ, Brandal G., Donlon S, et al. Photodynamic therapy (PDT) for brain tumors: where do we stand? Photodiagn Photodyn Ther 2015;12:530-44.

9. Bechet D, Mordon SR, Guillemin F, Barberi-Heyob MA. Photodynamic therapy of malignant brain tumours: a complementary approach to conventional therapies. Cancer Treat Rev 2014;40:229-41.

10. Cramer SW, Chen CC. Photodynamic therapy for the treatment of glioblastoma. Front Surg 2020;6:81.

11. Casas A, Perotti C, Ortel B, et al. Tumor cell lines resistant to ALA-mediated photodynamic therapy and possible tools to target surviving cells. Int J Oncol 2006;29:397-405.

12. Casas A, Di Venosa G, Hasan T, Batlle A. Mechanisms of resistance to photodynamic therapy. Curr Med Chem 2011;18:2486-515.

13. Girotti AW. Upregulation of nitric oxide in tumor cells as a negative adaptation to photodynamic therapy. Lasers in Surg Med 2018;50:590-8.

14. Fahey JM, Girotti AW. Nitric oxide antagonism to anti-glioblastoma photodynamic therapy: mitigation by inhibitors of nitric oxide generation. Cancers 2019;11:231.

15. Thomas DD, Liu X, Kantrow SP, Lancaster JR Jr. The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci U S A 2001;98:355-60.

16. Gantner BN, LaFond KM, Bonini MG. Nitric oxide in cellular adaptation and disease. Redox Biol 2020;34:101550.

17. Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J 1994;298:249-58.

18. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J 2001;357:593-615.

19. Lechner M, Lirk P, Rieder J. Inducible nitric oxide synthase (iNOS) in tumor biology: two sides of the same coin. Sem Cancer biol 2005;5:277-89.

20. Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol 2015;6:334-3.

21. Kamm A, Przychodzen P, Kuban-Jankowska A, et al. Nitric oxide and its derivatives in the cancer battlefield. Nitric Oxide 2019;93:102-14.

22. Thomas DD, Ridnour LA, Isenberg JS, et al. The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med 2008;45:18-31.

23. Heinrich TA, da Silva RS, Miranda KM, Switzer CH, Wink DA, Fukuto JM. Biological nitric oxide signaling: chemistry and terminology. Br J Pharmacol 2013;169:1417-29.

24. Jahani-Asi A, Bonni A. iNOS: a potential therapeutic target for malignant glioma. Curr Mol Med 2013;13:1241-9.

25. Tran AN, Boyd NH, Walker K, Hjelmeland AB. NOS expression and NO function in glioma and implications for patient therapies. Antiox Redox Signal 2017;26:986-99.

26. Foster HW, Hess DT, Stamler JS. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 2009;15:391-404.

27. Thomas DD, Jord’heuil D. S-nitrosation: current concepts and new developments. Antiox Redox Signal 2012;17:924-36.

28. Hogg N, Broniowska KA. The chemical biology of S-nitrosothiols. Antiox Redox Signal 2012;17:969-80.

29. Fionda C, Abruzzese MP, Santoni A, Cippitelli M. Immunoregulatory and effector activities of nitric oxide and reactive nitrogen species in cancer. Curr Med Chem 2016;23:2618-36.

30. Turchi JJ. Nitric oxide and cisplatin resistance: NO easy answers. Proc Natl Acad Aci USA 2006;103:4337-8.

31. Eyler CE, Wu QL, Yan K, et al. Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell 2011;146:53-66.

32. Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst 1998;90:889-905.

33. Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA Cancer j Clin 2011;61:250-81.

34. dos Santos AG, de Almeida DRQ, Ferreira L, Baptista MS, Labriola L. Photodynamic therapy in cancer treatment. J. Cancer Metastasis Treat 2019;5:25.

35. Whelan HT. High-grade glioma/glioblastoma multiforme: is there a role for photodynamic therapy? J Natl Compr Canc Netw 2012;1:S31-34.

36. Akimoto J. Photodynamic Therapy for Malignant Brain Tumors. Neurol Med Chir (Tokyo) 2016;56:151-7.

37. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003;22:7265-79.

38. Falk-Mahapatra R, Gollnick SO. Photodynamic therapy and immunity: an update. Photochem Photobiol 2020;96:550-9.

39. Kennedy JC, Pottier RH. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J. Photochem. Photobiol B 1992;14:275-92.

40. Peng Q, Berg K, Moan J, Kongshaug M, Nesland JM. 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research. Photochem. Photobiol 1997;65:235-51.

41. Mahmoudi K, Garvey KL, Bouras A, et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J. Neuro-Oncol 2019;141:595-607.

42. Stummer W, Stocker S, Novotny A, et al. In vitro and in vivo porphyrin accumulation in C6 glioma cells after exposure to 5-aminolevulinic acid. J Photochem Photobiol B 1998;45:160-9.

43. Colditz MJ, van Leyen K, Jeffree RL. Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 2: theoretical, biochemical and practical aspects. J Clin Neurosci 2012;19:1611-6.

44. Yang X, Palasuberniam P, Kraus D, Chen B. Aminolevulinic acid-based tumor detection and therapy: molecular mechanisms and strategies for enhancement. Int J Mol Sci 2015;16:25856-80.

45. Henderson BW, Sitnik-Busch TM, Vaughan LA. Potentiation of photodynamic therapy antitumor activity in mice by nitric oxide synthase inhibitors is fluence rate-dependent Photochem. Photobiol 1999;70:64-71.

46. Korbelik M, Parking CS, Shibuya H, et al. Nitric oxide production by tumor tissue: impact on the response to photodynamic therapy. Br. J Cancer 2000;82:1835-43.

47. Reeves KL, Reed MWR, Brown NJ. The role of nitric oxide in the treatment of tumors with aminolaevulinic acid-induced photodynamic therapy. J. Photochem Photobiol B: Biology 2010;101:224-32.

48. Rapozzi V, Della Pietra E, Bonavida B. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy. Redox Biol 2015;6:311-7.

49. Casas A, Perotti H, Fukuda H, del C Battle AM. Photodynamic therapy of activated and resting lymphocytes and its antioxidant adaptive response. Lasers Med Sci 2002;17:42-50.

50. Palasuberniam P, Yang X, Kraus D, Jones P, Myers KA, Chen B. ABCG2 transporter inhibitor restores the sensitivity to triple negative breast cancer cells to aminolevulinic acid-mediated photodynamic therapy. Sci Rep 2015;5:13298.

51. Bhowmick R, Girotti AW. Signaling events in apoptotic photokilling of 5-aminolevulinic acid-treated tumor cells: inhibitory effects of nitric oxide. Free Radic Biol Med 2009;47:731-40.

52. Bhowmick R, Girotti AW. Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic-based photodynamic therapy. Free Radic Biol Med 2010;48:1296-301.

53. Bhowmick R, Girotti AW. Rapid upregulation of cytoprotective nitric oxide in breast tumor cels subjected to a photodynamic therapy-like oxidative challenge. Photochem Photobiol 2011;87:378-86.

54. Bhowmick R, Girotti AW. Pro-survival and pro-growth effects of stress-induced nitric oxide in a prostate cancer photodynamic therapy model. Cancer Lett 2014;343:115-22.

55. Fahey JM, Girotti AW. Accelerated migration and invasion of prostate cancer cells after a photodynamic therapy-like challenge: role of nitric oxide. Nitric Oxide 2015;49:47-55.

56. Fahey JM, Emmer JV, Korytowski W, Hogg N, Girotti AW. Antagonistic effects of endogenous nitric oxide in a glioblastoma photodynamic therapy model. Photochem Photobiol 2016;92:842-53.

57. Lancaster JR. The use of diaminofluorescein for nitric oxide detection; conceptual and methodological distinction between NO and nitrosation. Free Radic Biol Med 2010;49:1145.

58. Fahey JM, Girotti AW. Nitric oxide-mediated resistance to photodynamic therapy in a human breast tumor xenograft model: improved outcome with NOS2 inhibitors. Nitric Oxide 2017;62:52-61.

59. Fahey JM, Korytowski W, Girotti AW. Upstream signaling events leading to elevated production of pro-survival nitric oxide in photodynamically-challenged glioblastoma cells. Free Radic Biol Med 2019;137:37-45.

60. Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Cenin Cancer Biol 2000;10:415-33.

61. Korbelik M. Role of cell stress signaling networks in cancer cell death and antitumor immune response following proteotoxic injury inflicted by photodynamic therapy. Lasers Surg Med 2018;50:491-8.

62. Huang B, Yang XD, Zhow MM, Ozato K, Chen LF. Brd4 coactivates transcriptional activation of NF-κB via specific binding of acetylated RelA. Mol Cell Biol 2009;29:1375-87.

63. Fahey JM, Stancill JS, Smith BC, Girotti AW. Nitric oxide antagonism to glioblastoma photodynamic therapy and mitigation thereof by BET bromodomain inhibitor JQ1. J Biol Chem 2018;293:5345-59.

64. Shikima N, Lyon J, La Thangue NB. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol 1997;7:230-6.

65. Goodman RH, Smolik S. CBP/p300 in cell growth, transformation, and development. Genes Dev 2000;14:1553-77.

66. Zin ZH, Fang DY. The roles of SIRT1 in cancer. Genes Cancer 2013;4:97-104.

67. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase/Akt pathway in human cancer. Nat Rev Canc 2002;2:489-501.

68. Niziolek M, Korytowski W, Girotti AW. Chain-breaking antioxidant and cytoprotective action of nitric oxide on photodynamically stressed tumor cells. Photochem Photobiol 2003;78:262-70.

69. Zareba M, Niziolek M, Korytowski W, Girotti AW. Merocyanine 540-sensitized photokilling of leukemia cells: role of post-irradiation chain peroxidation of plasma membrane lipids as revealed by nitric oxide protection. Biochim Biophys Acta 2005;1722:51-9.

70. Rubbo H, Radi R, Trujillo M, et al. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. J Biol Chem 1994;269:26066-75.

71. Korbelik M, Cecic I, Sluiter W. .

72. Park HS, Huh SH, Kim MS, Lee SH, Choi EJ. Nitric oxide negatively regulates c-Jun N-terminal kinase/stress-activated protein by means of S-nitrosylation. Proc Natl Acad Sci USA 2000;97:14382-7.

73. Li CQ, Wogan GN. Nitric oxide as a modulator of apoptosis. Cancer let 2005;226:1-15.

74. Azad N, Vallyathan V, Tantishaiyakul V, Stehlik C, Leonard SS, Yon Rojanasakul. S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation a novel antiapoptotic mechanism that suppresses apoptosis. J BIOL CHEM 2006;281:34124-34.

75. Guan WP, Sha JB, Chen XJ, Xing YL, Yan JQ, Wang ZQ. Nitrosylation of mitogen activated protein kinase phosphatase-1 suppresses radiation-induced apoptosis. Cancer Lett 2012;314:137-46.

76. Stomberski CT, Hess DT, Stamler JS. Protein S-nitrosylation: determinants of specificity and enzymatic regulation of S-nitrosothiol-based signaling. Antiox Redox Signal 2017;10:1331-51.

77. Matsumoto H, Hayashi S, Hatashita M, et al. Induction of radioresistance by a nitric oxide-mediated bystander effect. Radiat Res 2001;155:387-96.

78. Yakovlev VA. Role of nitric oxide in the radiation-induced bystander effect. Redox Biol 2015;6:396-400.

79. Bazak J, Fahey JM, Wawak K, Korytowski W, Girotti AW. Enhanced aggressiveness of bystander cells in an anti-tumor photodynamic therapy model: role of nitric oxide produced by targeted cells. Free Radic Biol Med 2017;102:111-21.

80. Bazak J, Korytowski W, Girotti AW. Bystander effects of nitric oxide in cellular models of anti-tumor photodynamic therapy. Cancers (Basel) 2019;11:1674.

81. Hansel TT, Kharitonov SA, Donnelly LE, et al. A selective inhibitor of inducible nitric oxide synthase inhibits exhaled breath nitric oxide in healthy volunteers and asthmatics. FASEB J 2003;17:1298-317.

82. Singh D, Richards D, Knowles RG, et al. Selective inducible initric oxide synthase inhibition has no effect on allergen challenge in asthma. Am J Respir Crit Care Med 2007;176:988-93.

83. Shu S, Polyak K. BET bromodomain proteins as cancer therapeutic targets. Cold Spring Harb Symp Quant Biol 2016;81:123-9.

84. Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature 2010;468:1067-173.

85. Filippakopoulos P, Knapp S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov 2014;13:337-56.

86. Lam FC, Morton SW, Wyckoff J, et al. Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat Commun 2018;9:1991.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/