1. Sontheimer EJ, Carthew RW. Silence from within: endogenous siRNAs and miRNAs. Cell 2005;122:9-12.

2. Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS. Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 2005;15:331-41.

3. Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development 2005;132:4653-62.

4. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5:522-31.

5. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005;433:769-73.

6. Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 2017;46:D296-D302.

7. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res 2004;32:D109-11.

8. Maracaja-Coutinho V, Paschoal AR, Caris-Maldonado JC, Borges PV, Ferreira AJ, et al. Noncoding RNAs Databases: Current Status and Trends. Methods Mol Biol 2019;1912:251-85.

9. Monga I, Kumar M. Computational resources for prediction and analysis of functional miRNA and their targetome. Methods Mol Biol 2019;1912:215-50.

10. Gambari R, Fabbri E, Borgatti M, Lampronti I, Finotti A, et al. Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development. Biochem Pharmacol 2011;82:1416-29.

11. Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 2015;518:107-10.

12. Taylor MA, Schiemann WP. Therapeutic Opportunities for Targeting microRNAs in Cancer. Mol Cell Ther 2014;2:1-13.

13. Nana-Sinkam SP, Croce CM. Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 2013;93:98-104.

14. Piva R, Spandidos DA, Gambari R. From microRNA functions to microRNA therapeutics: novel targets and novel drugs in breast cancer research and treatment. Int J Oncol 2013;43:985-94.

15. Gambari R, Brognara E, Spandidos DA, Fabbri E. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Νew trends in the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol 2016;49:5-32.

16. Finotti A, Allegretti M, Gasparello J, Giacomini P, Spandidos DA, et al. Liquid biopsy and PCR-free ultrasensitive detection systems in oncology. Int J Oncol 2018;53:1395-434.

17. Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. J Cell Physiol 2019. in press

18. Pekarsky Y, Croce CM. Noncoding RNA genes in cancer pathogenesis. Adv Biol Regul 2018;71:219-23.

19. Kogure A, Kosaka N, Ochiya T. Cross-talk between cancer cells and their neighbors via miRNA in extracellular vesicles: an emerging player in cancer metastasis. J Biomed Sci 2019;26:7.

20. Montgomery RL, Yu G, Latimer PA, Stack C, Robinson K, et al. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol Med 2014;6:1347-56.

21. Bader AG. miR-34-a microRNA replacement therapy is headed to the clinic. Front Genet 2012;3:120.

22. Kwekkeboom RF, Lei Z, Doevendans PA, Musters RJ, Sluijter JP. Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges. Clin Sci (Lond) 2014;127:351-65.

23. Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 2007;21:1025-30.

24. Sampson VB, Rong NH, Han J, Yang Q, Aris V, et al. MicroRNA let-7a down-regulates MYC and reverts MYC induced growth in burkitt lymphoma cells. Cancer Res 2007;67:9762-70.

25. Weiler J, Hunziker J, Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther 2006;13:496-502.

26. Lu Y, Xiao J, Lin H, Bai Y, Luo X, et al. A single antimicroRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res 2009;37:e24.

27. Lennox KA, Behlke MA. Chemical modification and design of antimiRNA oligonucleotides. Gene Ther 2011;18:1111-20.

28. Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet 2011;43:371-8.

29. Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008;452:896-9.

30. Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S. The utility of LNA in microRNA based cancer diagnostics and therapeutics. Semin Cancer Biol 2008;18:89-102.

31. Staedel C, Varon C, Nguyen PH, Vialet B, Chambonnier L, et al. Inhibition of gastric tumor cell growth using seed-targeting LNA as specific, long-lasting MicroRNA inhibitors. Mol Ther Nucleic Acids 2015;4:e246.

32. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007;4:721-6.

33. Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. RNA 2010;16:2043-50.

34. Kluiver J, Gibcus JH, Hettinga C, Adema A, Richter MK, et al. Rapid generation of microRNA sponges for microRNA inhibition. PLoS One 2012;7:e29275.

35. Kluiver J, Slezak-Prochazka I, Smigielska-Czepiel K, Halsema N, Kroesen BJ, et al. Generation of miRNA sponge constructs. Methods 2012;58:113-7.

36. Li KC, Chang YH, Yeh CL, Hu YC. Healing of osteoporotic bone defects by baculovirus- engineered bone marrow-derived MSCs expressing MicroRNA sponges. Biomaterials 2015;74:155-66.

37. de Melo Maia B, Ling H, Monroig P, Ciccone M, Soares FA, et al. Design of a miRNA sponge for the miR-17 miRNA family as a therapeutic strategy against vulvar carcinoma. Mol Cell Probes 2015;29:420-6.

38. Tay FC, Lim JK, Zhu H, Lin LC, Wang S. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells. Adv Drug delivery Rev 2015;81:117-27.

39. Liu Y, Han Y, Zhang H, Nie L, Jiang Z, et al. Synthetic miRNA-mowers targeting miR- 183-96-182 cluster or miR-210 inhibit growth and migration and induce apoptosis in bladder cancer cells. PLoS One 2012;7:e52280.

40. Wang Z. The principles of MiRNA-masking antisense oligonucleotides technology. Methods Mol Biol 2011;676:43-9.

41. Bak RO, Hollensen AK, Mikkelsen JG. Managing microRNAs with vector-encoded decoy-type inhibitors. Mol Ther 2013;21:1478-85.

42. Murakami K, Miyagishi M. Tiny masking locked nucleic acids effectively bind to mRNA and inhibit binding of microRNAs in relation to thermodynamic stability. Biomed Rep 2014;2:509-12.

43. Das S. Identification and targeting of microRNAs modulating acquired chemotherapy resistance in Triple negative breast cancer (TNBC): A better strategy to combat chemoresistance. Med Hypotheses 2016;96:5-8.

44. Chan JK, Blansit K, Kiet T, Sherman A, Wong G, et al. The inhibition of miR-21 promotes apoptosis and chemosensitivity in ovarian cancer. Gynecol Oncol 2014;132:739-44.

45. Feng R, Dong L. Knockdown of microRNA-127 reverses adriamycin resistance via cell cycle arrest and apoptosis sensitization in adriamycin-resistant human glioma cells. Int J Clin Exp Pathol 2015;8:6107-16.

46. Li W, Guo F, Wang P, Hong S, Zhang C. miR-221/222 confers radioresistance in glioblastoma cells through activating Akt independent of PTEN status. Curr Mol Med 204;14:185-95.

47. Chen L, Zhang J, Han L, Zhang A, Zhang C, et al. Downregulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status. Oncol Rep 2012;27:854-60.

48. Xie Q, Yan Y, Huang Z, Zhong X, Huang L. MicroRNA-221 targeting PI3-K/Akt signaling axis induces cell proliferation and resistance in human glioblastoma. Neuropathology 2014;34:455-64.

49. Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 1991;254:1497-500.

50. Nielsen PE. Targeting double stranded DNA with peptide nucleic acid (PNA). Curr Med Chem 2001;8:545-50.

51. Borgatti M, Lampronti I, Romanelli A, Pedone C, Saviano M, et al. Transcription factor decoy molecules based on a peptide nucleic acid (PNA)-DNA chimera mimicking Sp1 binding sites. J Biol Chem 2003;278:7500-9.

52. Gambari R. Peptide-nucleic acids (PNAs): a tool for the development of gene expression modifiers. Curr Pharm Des 2001;7:1839-62.

53. Gambari R. Biological activity and delivery of peptide nucleic acids (PNA)-DNA chimeras for transcription factor decoy (TFD) pharmacotherapy. Curr Med Chem 2004;11:1253-63.

54. Nielsen PE. Peptide nucleic acids (PNA) in chemical biology and drug discovery. Chem Biodivers 2010;7:786-804.

55. Nielsen PE. Gene targeting and expression modulation by peptide nucleic acids (PNA). Curr Pharm Des 2010;16:3118-23.

56. Gambari R, Borgatti M, Bezzerri V, Nicolis E, Lampronti I, et al. Decoy oligodeoxyribonucleotides and peptide nucleic acids-DNA chimeras targeting nuclear factor kappa-B: inhibition of IL-8 gene expression in cystic fibrosis cells infected with Pseudomonas aeruginosa. Biochem Pharmacol 2010;80:1887-94.

57. Pandey VN, Upadhyay A, Chaubey B. Prospects for antisense peptide nucleic acid (PNA) therapies for HIV. Expert Opin Biol Ther 2009;9:975-89.

58. Manicardi A, Fabbri E, Tedeschi T, Sforza S, Bianchi N, et al. Cellular Uptakes, biostabilities and anti-miR-210 activities of chiral Arginine-PNAs in leukaemic K562 cells. Chembiochem 2012;13:1327-37.

59. Fabbri E, Manicardi A, Tedeschi T, Sforza S, Bianchi N, et al. Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs). ChemMedChem 2011;6:2192-202.

60. Fabani MM, Gait MJ. MiR-122 targeting with LNA/2'-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA 2008;14:336-46.

61. Fabani MM, Abreu-Goodger C, Williams D, Lyons PA, Torres AG, et al. Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Research 2010;38:4466-75.

62. Brognara E, Fabbri E, Aimi F, Manicardi A, Bianchi N, et al. Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells. Int J Oncol 2012;41:2119-27.

63. Manicardi A, Gambari R, de Cola L, Corradini R. Preparation of Anti-miR PNAs for Drug Development and Nanomedicine. Methods Mol Biol 2018;1811:49-63.

64. Gupta A, Quijano E, Liu Y, Bahal R, Scanlon SE, et al. Anti-tumor Activity of miniPEG- γ-Modified PNAs to Inhibit MicroRNA-210 for Cancer Therapy. Mol Ther Nucleic Acids 2017;9:111-9.

65. Yan LX, Wu QN, Zhang Y, Li YY, Liao DZ, et al. Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res 2011;13:R2.

66. Brognara E, Fabbri E, Bazzoli E, Montagner G, Ghimenton C, et al. Uptake by human glioma cell lines and biological effects of a peptide-nucleic acids targeting miR-221. J Neurooncol 2014;118:19-28.

67. von Neubeck C, Seidlitz A, Kitzler HH, Beuthien-Baumann B, Krause M. Glioblastoma multiforme: emerging treatments and stratification markers beyond new drugs. Br J Radiol 2015;88:20150354.

68. Buczkowicz P, Hawkins C. Pathology, molecular genetics, and epigenetics of diffuse intrinsic pontine glioma. Front Oncol 2015;5:147.

69. Pace A, Dirven L, Koekkoek JAF, Golla H, Fleming J, et al. European association for neuro-oncology (EANO) guidelines for palliative care in adults with glioma. Lancet Oncol 2017;18:e330-40.

70. Polivka J, Polivka J, Holubec L, Kubikova T, Priban V, et al. Advances in experimental targeted therapy and immunotherapy for patients with glioblastoma multiforme. Anticancer Res 2017;7:21-33.

71. Abbruzzese C, Matteoni S, Signore M, Cardone L, Nath K, et al. Drug repurposing for the treatment of glioblastoma multiforme. J Exp Clin Cancer Res 2017;36:169.

72. Artene SA, Tuţă C, Dragoi A, Alexandru O, Stefana Oana P, et al. Current and emerging EGFR therapies for glioblastoma. J Immunoassay Immunochem 2018;39:1-11.

73. Popescu AM, Alexandru O, Brindusa C, Purcaru SO, Tache DE, et al. Targeting the VEGF and PDGF signaling pathway in glioblastoma treatment. Int J Clin Exp Pathol 2015;8:7825-37.

74. Trojan J, Cloix JF, Ardourel MY, Chatel M, Anthony DD. Insulin-like growth factor type I biology and targeting in malignant gliomas. Neuroscience 2007;145:795-811.

75. Cuevas P, Carceller F, Angulo J, González-Corrochano R, Cuevas-Bourdier A, et al. Antiglioma effects of a new, low molecular mass, inhibitor of fibroblast growth factor. Neurosci Lett 2011;491:1-7.

76. McGranahan T, Therkelsen KE, Ahmad S, Nagpal S. Current State of Immunotherapy for Treatment of Glioblastoma. Curr Treat Options Oncol 2019;20:24.

77. Castro-Gamero AM, Pezuk JA, Brassesco MS, Tone LG. G2/M inhibitors as pharmacotherapeutic opportunities for glioblastoma: the old, the new, and the future. Cancer Biol Med 2018;15:354-74.

78. Krichevsky AM, Uhlmann EJ. Oligonucleotide therapeutics as a new class of drugs for malignant brain tumors: targeting mRNAs, regulatory RNAs, mutations, combinations, and beyond. Neurotherapeutics 2019. In Press

79. Geraldo LHM, Garcia C, da Fonseca ACC, Dubois LGF, de Sampaio E, et al. Glioblastoma therapy in the age of molecular medicine. Trends Cancer 2019;5:46-65.

80. Anjum K, Shagufta BI, Abbas SQ, Patel S, Khan I, et al. Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review. Biomed Pharmacother 2017;92:681-9.

81. Lozada-Delgado EL, Grafals-Ruiz N, Vivas-Mejía PE. RNA interference for glioblastoma therapy: Innovation ladder from the bench to clinical trials. Life Sci 2017;188:26-36.

82. Touat M, Idbaih A, Sanson M, Ligon KL. Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol 2017;28:1457-72.

83. Hermansen SK, Kristensen BW. MicroRNA biomarkers in glioblastoma. J Neurooncol 2013;114:13-23.

84. Khalil S, Fabbri E, Santangelo A, Bezzerri V, Cantù C, et al. miRNA array screening reveals cooperative MGMT-regulation between miR-181d-5p and miR-409-3p in glioblastoma. Oncotarget 2016;7:28195-206.

85. Chan XH, Nama S, Gopal F, Rizk P, Ramasamy S, et al. Targeting glioma stem cells by functional inhibition of a prosurvival oncomiR-138 in malignant gliomas. Cell Rep 2012;2:591-602.

86. Li C, Sun J, Xiang Q, Liang Y, Zhao N, et al. Prognostic role of microRNA-21 expression in gliomas: a meta-analysis. J Neurooncol 2016;130:11-7.

87. Beyer S, Fleming J, Meng W, Singh R, Haque SJ, et al. The Role of miRNAs in Angiogenesis, Invasion and Metabolism and Their Therapeutic Implications in Gliomas. Cancers (Basel) 2017;9:E85.

88. Wang Y, Wang X, Zhang J, Sun G, Luo H, et al. MicroRNAs involved in the EGFR/PTEN/AKT pathway in gliomas. J Neurooncol 2012;106:217-24.

89. Regazzo G, Terrenato I, Spagnuolo M, Carosi M, Cognetti G, et al. A restricted signature of serum miRNAs distinguishes glioblastoma from lower grade gliomas. J Exp Clin Cancer Res 2016;35:124.

90. Areeb Z, Stylli SS, Koldej R, Ritchie DS, Siegal T, et al. MicroRNA as potential biomarkers in Glioblastoma. J Neurooncol 2015;125:237-48.

91. Ouyang Q, Xu L, Cui H, Xu M, Yi L. MicroRNAs and cell cycle of malignant glioma. Int J Neurosci 2016;126:1-9.

92. Yan Z, Che S, Wang J, Jiao Y, Wang C, et al. miR-155 contributes to the progression of glioma by enhancing Wnt/β-catenin pathway. Tumour Biol 2015;36:5323-31.

93. Yang L, Li C, Liang F, Fan Y, Zhang S. MiRNA-155 promotes proliferation by targeting caudal-type homeobox 1 (CDX1) in glioma cells. Biomed Pharmacother 2017;95:1759-64.

94. Costa PM, Cardoso AL, Mano M, de Lima MC. MicroRNAs in glioblastoma: role in pathogenesis and opportunities for targeted therapies. CNS Neurol Disord Drug Targets 2015;14:222-38.

95. Chen L, Kang C. miRNA interventions serve as 'magic bullets' in the reversal of glioblastoma hallmarks. Oncotarget 2015;6:38628-42.

96. Wang H, Xu T, Jiang Y, Yan Y, Qin R, et al. MicroRNAs in human glioblastoma: from bench to beside. Front Biosci (Landmark Ed) 2015;20:105-18.

97. Piwecka M, Rolle K, Belter A, Barciszewska AM, Żywicki M, et al. Comprehensive analysis of microRNA expression profile in malignant glioma tissues. Mol Oncol 2015;9:1324-40.

98. Banelli B, Forlani A, Allemanni G, Morabito A, Pistillo MP, et al. MicroRNA in Glioblastoma: An Overview. Int J Genomics 2017;2017:7639084.

99. Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 2005;334:1351-8.

100. Santangelo A, Imbrucè P, Gardenghi B, Belli L, Agushi R, et al. A microRNA signature from serum exosomes of patients with glioma as complementary diagnostic biomarker. J Neurooncol 2018;136:51-62.

101. Zhao H, Shen J, Hodges TR, Song R, Fuller GN, et al. Serum microRNA profiling in patients with glioblastoma: a survival analysis. Mol Cancer 2017;16:59.

102. Liu S, Yin F, Zhang J, Wicha MS, Chang AE, et al. Regulatory roles of miRNA in the human neural stem cell transformation to glioma stem cells. J Cell Biochem 2014;115:1368-80.

103. D'Urso PI, D'Urso OF, Storelli C, Mallardo M, Gianfreda CD, et al. miR-155 is up- regulated in primary and secondary glioblastoma and promotes tumour growth by inhibiting GABA receptors. Int J Oncol 2012;41:228-34.

104. Ling N, Gu J, Lei Z, Li M, Zhao J, Zhang HT, Li X. microRNA-155 regulates cell proliferation and invasion by targeting FOXO3a in glioma. Oncol Rep 2013;30:2111-8.

105. Zhou J, Wang W, Gao Z, Peng X, Chen X, et al. MicroRNA-155 promotes glioma cell proliferation via the regulation of MXI1. PLoS One 2013;8:e83055.

106. Meng W, Jiang L, Lu L, Hu H, Yu H, et al. Anti-miR-155 oligonucleotide enhances chemosensitivity of U251 cell to taxol by inducing apoptosis. Cell Biol Int 2012;36:653-9.

107. Sun J, Shi H, Lai N, Liao K, Zhang S, et al. Overexpression of microRNA-155 predicts poor prognosis in glioma patients. Med Oncol 2014;31:911.

108. Zhou Y, Wang X, Liu Z, Huang X, Li X, et al. Prognostic role of microRNA-155 expression in gliomas: A meta-analysis. Clin Neurol Neurosurg 2019;176:103-9.

109. Milani R, Brognara E, Fabbri E, Manicardi A, Corradini R, et al. Targeting miR-155-5p and miR-221-3p by peptide nucleic acids induces Caspase-3 activation and apoptosis in temozolomide-resistant T98G glioma cells. Int J Oncol 2019. in press

110. Finotti A, Allegretti M, Gasparello J, Giacomini P, Spandidos DA, et al. Liquid biopsy and PCR-free ultrasensitive detection systems in oncology (Review). Int J Oncol 2018;53:1395-434.

111. Bertucci A, Prasetyanto EA, Septiadi D, Manicardi A, Brognara E, et al. Combined delivery of temozolomide and anti-mir221 PNA using mesoporous silica nanoparticles induces apoptosis in resistant glioma cells. Small 2015;11:5687-95.

112. Brognara E, Fabbri E, Montagner G, Gasparello J, Manicardi A, et al. High levels of apoptosis are induced in human glioma cell lines by co-administration of peptide nucleic acids targeting miR-221 and miR-222. Int J Oncol 2016;48:1029-38.

113. Seo YE, Suh HW, Bahal R, Josowitz A, Zhang J, et al. Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival in glioblastoma. Biomaterials 2019;201:87-98.

114. Tomassi S, Ieranò C, Mercurio ME, Nigro E, Daniele A, et al. Cationic nucleopeptides as novel non-covalent carriers for the delivery of peptide nucleic acid (PNA) and RNA oligomers. Bioorg Med Chem 2018;26:2539-50.

115. Avitabile C, Accardo A, Ringhieri P, Morelli G, Saviano M, et al. Incorporation of naked peptide nucleic acids into liposomes leads to fast and efficient delivery. Bioconjug. Chem 2015;26:1533-41.

116. Saleh AF, Arzumanov A, Abes R, Owen D, Lebleu B, et al. Synthesis and splice- redirecting activity of branched, arginine-rich peptide dendrimer conjugates of peptide nucleic acid oligonucleotides. Bioconj Chem 2010;21:1902-11.

117. Turner Y, Wallukat G, Säälik P, Wiesner B, Pritz S, et al. Cellular uptake and biological activity of peptide nucleic acids conjugated with peptides with and without cell-penetrating ability. J Pept Sci 2010;16:71-80.

118. Hu J, Corey DR. Inhibiting gene expression with peptide nucleic acid (PNA)-peptide conjugates that target chromosomal DNA. Biochemistry 2007;46:7581-9.

119. Hnedzko D, McGee DW, Karamitas YA, Rozners E. Sequence-selective recognition of double-stranded RNA and enhanced cellular uptake of cationic nucleobase and backbone- modified peptide nucleic acids. RNA 2017;23:58-69.

120. Shiraishi T, Hamzavi R, Nielsen P E. Subnanomolar antisense activity of phosphonate- peptide nucleic acid (PNA) conjugates delivered by cationic lipids to HeLa cells. Nucleic Acids Res 2008;36:4424-32.

121. McNeer NA, Chin JY, Schleifman EB, Fields RJ, Glazer PM, et al. Nanoparticles deliver triplex-forming PNAs for site-specific genomic recombination in CD34+ human hematopoietic progenitors. Mol Ther 2011;19:172-180.

122. Macadangdang B, Zhang N, Lund PE, Marple AH, Okabe M, et al. Inhibition of multidrug resistance by SV40 pseudovirion delivery of an antigene peptide nucleic acid (PNA) in cultured cells. PLoS One 2011;6:e17981.

123. Hamilton SE, Simmons CG, Kathiriya IS, Corey DR. Cellular delivery of peptide nucleic acids and inhibition of human telomerase. Chem Biol 1999;6:343-51.

124. Bertucci A, Lülf H, Septiadi D, Manicardi A, Corradini R, et al. Intracellular delivery of peptide nucleic acid and organic molecules using zeolite-L nanocrystals. Adv Healthc Mater 2014;3:1812-7.

125. Gasparello J, Manicardi A, Casnati A, Corradini R, Gambari R, et al. Efficient cell penetration and delivery of peptide nucleic acids by an argininocalix[4]arene. Sci Rep 2019;9:3036.

126. Jung J, Yeom C, Choi YS, Kim S, Lee E, et al. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge. Oncotarget 2015;6:20370-87.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)


All published articles are preserved here permanently:


All published articles are preserved here permanently: