REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.

2. Cianfrocca M, Goldstein LJ. Prognostic and predictive factors in early-stage breast cancer. Oncologist 2004;9:606-16.

3. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011;331:1559-64.

4. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 2003;3:453-8.

5. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell 2017;168:670-91.

6. Kim YN, Koo KH, Sung JY, Yun UJ, Kim H. Anoikis resistance: an essential prerequisite for tumor metastasis. Int J Cell Biol 2012;2012:306879.

7. Xie HY, Shao ZM, Li DQ. Tumor microenvironment: driving forces and potential therapeutic targets for breast cancer metastasis. Chin J Cancer 2017;36:36.

8. Gerlinger M, McGranahan N, Dewhurst SM, Burrell RA, Tomlinson I, et al. Cancer: evolution within a lifetime. Annu Rev Genet 2014;48:215-36.

9. Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer 2009;9:302-12.

10. Turajlic S, Swanton C. Metastasis as an evolutionary process. Science 2016;352:169-75.

11. Rosen JM, Jordan CT. The increasing complexity of the cancer stem cell paradigm. Science 2009;324:1670-3.

12. Bapat SA. Evolution of cancer stem cells. Semin Cancer Biol 2007;17:204-13.

13. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 2010;140:62-73.

14. Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self- renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 2008;10:R25.

15. Nowell PC. The clonal evolution of tumor cell populations. Science 1976;194:23-8.

16. La Porta CAM, Zapperi S. Complexity in cancer stem cells and tumor evolution: toward precision medicine. Semin Cancer Biol 2017;44:3-9.

17. Poleszczuk J, Hahnfeldt P, Enderling H. Evolution and phenotypic selection of cancer stem cells. PLoS Comput Biol 2015;11:e1004025.

18. Hwang-Verslues WW, Kuo WH, Chang PH, Pan CC, Wang HH, et al. Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS One 2009;4:e8377.

19. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011;146:633-44.

20. Iliopoulos D, Hirsch HA, Wang G, Struhl K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci U S A 2011;108:1397-402.

21. Notta F, Mullighan CG, Wang JC, Poeppl A, Doulatov S, et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 2011;469:362-7.

22. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2011;469:356-61.

23. Piccirillo SG, Combi R, Cajola L, Patrizi A, Redaelli S, et al. Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene 2009;28:1807-11.

24. Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 2011;17:867-74.

25. Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 2011;481:85-9.

26. Jang GB, Kim JY, Cho SD, Park KS, Jung JY, et al. Blockade of Wnt/beta-catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype. Sci Rep 2015;5:12465.

27. Xu L, Zhang L, Hu C, Liang S, Fei X, et al. WNT pathway inhibitor pyrvinium pamoate inhibits the self-renewal and metastasis of breast cancer stem cells. Int J Oncol 2016;48:1175-86.

28. Zhao D, Pan C, Sun J, Gilbert C, Drews-Elger K, et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene 2015;34:3107-19.

29. Elaimy AL, Guru S, Chang C, Ou J, Amante JJ, et al. VEGF-neuropilin-2 signaling promotes stem-like traits in breast cancer cells by TAZ-mediated repression of the Rac GAP beta2- chimaerin. Sci Signal 2018;11:eaao6897.

30. Wang Y, Li C, Li Y, Zhu Z. Involvement of breast cancer stem cells in tumor angiogenesis. Oncol Lett 2017;14:8150-5.

31. Liu M, Sakamaki T, Casimiro MC, Willmarth NE, Quong AA, et al. The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res 2010;70:10464-73.

32. Storci G, Sansone P, Mari S, D’Uva G, Tavolari S, et al. TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype. J Cell Physiol 2010;225:682-91.

33. Rinkenbaugh AL, Baldwin AS. The NF-kappaB Pathway and Cancer Stem Cells. Cells 2016;5:E16.

34. Zhou J, Zhang H, Gu P, Bai J, Margolick JB, et al. NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat 2008;111:419-27.

35. Parvani JG, Schiemann WP. Sox4, EMT programs, and the metastatic progression of breast cancers: mastering the masters of EMT. Breast Cancer Res 2013;15:R72.

36. Taylor MA, Parvani JG, Schiemann WP. The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia 2010;15:169-90.

37. Micalizzi DS, Ford HL. Epithelial-mesenchymal transition in development and cancer. Future oncology 2009;5:1129-43.

38. Felipe Lima J, Nofech-Mozes S, Bayani J, Bartlett JM. EMT in Breast Carcinoma-A Review. J Clin Med 2016;5:E65.

39. Luo M, Hou L, Li J, Shao S, Huang S, et al. VEGF/NRP-1axis promotes progression of breast cancer via enhancement of epithelial-mesenchymal transition and activation of NF-kappaB and beta-catenin. Cancer Lett 2016;373:1-11.

40. Fantozzi A, Gruber DC, Pisarsky L, Heck C, Kunita A, et al. VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation. Cancer Res 2014;74:1566-75.

41. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005;65:5506-11.

42. Shay JW, Wright WE. Telomeres and telomerase in normal and cancer stem cells. FEBS Lett 2010;584:3819-25.

43. Hannen R, Bartsch JW. Essential roles of telomerase reverse transcriptase hTERT in cancer stemness and metastasis. FEBS Lett 2018;592:2023-31.

44. Bojovic B, Booth RE, Jin Y, Zhou X, Crowe DL. Alternative lengthening of telomeres in cancer stem cells in vivo. Oncogene 2015;34:611-20.

45. de Lange T. How telomeres solve the end-protection problem. Science 2009;326:948-52.

46. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, et al. Mammalian telomeres end in a large duplex loop. Cell 1999;97:503-14.

47. de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005;19:2100-10.

48. O’Sullivan RJ, Karlseder J. Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 2010;11:171-81.

49. Schmidt JC, Cech TR. Human telomerase: biogenesis, trafficking, recruitment, and activation. Genes Dev 2015;29:1095-105.

50. Cho NW, Dilley RL, Lampson MA, Greenberg RA. Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 2014;159:108-21.

51. Dilley RL, Verma P, Cho NW, Winters HD, Wondisford AR, et al. Break-induced telomere synthesis underlies alternative telomere maintenance. Nature 2016;539:54-8.

52. Cesare AJ, Kaul Z, Cohen SB, Napier CE, Pickett HA, et al. Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat Struct Mol Biol 2009;16:1244-51.

53. Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 2011;333:425.

54. Lovejoy CA, Li W, Reisenweber S, Thongthip S, Bruno J, et al. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet 2012;8:e1002772.

55. Subhawong AP, Heaphy CM, Argani P, Konishi Y, Kouprina N, et al. The alternative lengthening of telomeres phenotype in breast carcinoma is associated with HER-2 overexpression. Mod Pathol 2009;22:1423-31.

56. Heaphy CM, Subhawong AP, Hong SM, Goggins MG, Montgomery EA, et al. Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol 2011;179:1608-15.

57. Tanaka H, Abe S, Huda N, Tu L, Beam MJ, et al. Telomere fusions in early human breast carcinoma. Proc Natl Acad Sci U S A 2012;109:14098-103.

58. Gisselsson D, Jonson T, Petersen A, Strombeck B, Dal Cin P, et al. Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci U S A 2001;98:12683-8.

59. Hampton OA, Den Hollander P, Miller CA, Delgado DA, Li J, et al. A sequence-level map of chromosomal breakpoints in the MCF-7 breast cancer cell line yields insights into the evolution of a cancer genome. Genome Res 2009;19:167-77.

60. Cleal K, Norris K, Baird D. Telomere length dynamics and the evolution of cancer genome architecture. Int J Mol Sci 2018;19:E482.

61. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011;144:27-40.

62. Maciejowski J, Li Y, Bosco N, Campbell PJ, de Lange T. Chromothripsis and kataegis induced by telomere crisis. Cell 2015;163:1641-54.

63. Lafferty-Whyte K, Cairney CJ, Will MB, Serakinci N, Daidone MG, et al. A gene expression signature classifying telomerase and ALT immortalization reveals an hTERT regulatory network and suggests a mesenchymal stem cell origin for ALT. Oncogene 2009;28:3765-74.

64. Silvestre DC, Pineda JR, Hoffschir F, Studler JM, Mouthon MA, et al. Alternative lengthening of telomeres in human glioma stem cells. Stem Cells 2011;29:440-51.

65. Robinson NJ, Schiemann WP. Means to the ends: The role of telomeres and telomere processing machinery in metastasis. Biochim Biophys Acta 2016;1866:320-9.

66. Park JI, Venteicher AS, Hong JY, Choi J, Jun S, et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 2009;460:66-72.

67. Ghosh A, Saginc G, Leow SC, Khattar E, Shin EM, et al. Telomerase directly regulates NF- kappaB-dependent transcription. Nat Cell Biol 2012;14:1270-81.

68. Ding D, Xi P, Zhou J, Wang M, Cong YS. Human telomerase reverse transcriptase regulates MMP expression independently of telomerase activity via NF-kappaB-dependent transcription. FASEB J 2013;27:4375-83.

69. Hoffmeyer K, Raggioli A, Rudloff S, Anton R, Hierholzer A, et al. Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science 2012;336:1549-54.

70. Akiyama M, Hideshima T, Hayashi T, Tai YT, Mitsiades CS, et al. Nuclear factor-kappaB p65 mediates tumor necrosis factor alpha-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res 2003;63:18-21.

71. Liu N, Ding D, Hao W, Yang F, Wu X, et al. hTERT promotes tumor angiogenesis by activating VEGF via interactions with the Sp1 transcription factor. Nucleic Acids Res 2016;44:8693-703.

72. Wu KJ, Grandori C, Amacker M, Simon-Vermot N, Polack A, et al. Direct activation of TERT transcription by c-MYC. Nat Genet 1999;21:220-4.

73. Yin S, Cheryan VT, Xu L, Rishi AK, Reddy KB. Myc mediates cancer stem-like cells and EMT changes in triple negative breast cancers cells. PLoS One 2017;12:e0183578.

74. Yang A, Qin S, Schulte BA, Ethier SP, Tew KD, et al. MYC Inhibition Depletes Cancer Stem- like Cells in Triple-Negative Breast Cancer. Cancer Res 2017;77:6641-50.

75. Henson JD, Reddel RR. Assaying and investigating alternative lengthening of telomeres activity in human cells and cancers. FEBS Lett 2010;584:3800-11.

76. Xue Y, Li L, Zhang D, Wu K, Chen Y, et al. Twisted epithelial-to-mesenchymal transition promotes progression of surviving bladder cancer T24 cells with hTERT-dysfunction. PLoS One 2011;6:e27748.

77. Lagunas AM, Wu J, Crowe DL. Telomere DNA damage signaling regulates cancer stem cell evolution, epithelial mesenchymal transition, and metastasis. Oncotarget 2017;8:80139-55.

78. El-Badawy A, Ghoneim NI, Nasr MA, Elkhenany H, Ahmed TA, et al. Telomerase reverse transcriptase coordinates with the epithelial-to-mesenchymal transition through a feedback loop to define properties of breast cancer stem cells. Biol Open 2018;7:bio034181.

79. Nguyen GH, Tang W, Robles AI, Beyer RP, Gray LT, et al. Regulation of gene expression by the BLM helicase correlates with the presence of G-quadruplex DNA motifs. Proc Natl Acad Sci U S A 2014;111:9905-10.

80. Grudzien P, Lo S, Albain KS, Robinson P, Rajan P, et al. Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. Anticancer Res 2010;30:3853-67.

81. Jafri MA, Ansari SA, Alqahtani MH, Shay JW. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med 2016;8:69.

82. Hochreiter AE, Xiao H, Goldblatt EM, Gryaznov SM, Miller KD, et al. Telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth, and metastasis of breast cancer. Clin Cancer Res 2006;12:3184-92.

83. Dogan F, Ozates NP, Bagca BG, Abbaszadeh Z, Sogutlu F, et al. Investigation of the effect of telomerase inhibitor BIBR1532 on breast cancer and breast cancer stem cells. J Cell Biochem 2018; doi: 10.1002/jcb.27089.

84. Joseph I, Tressler R, Bassett E, Harley C, Buseman CM, et al. The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines. Cancer Res 2010;70:9494-504.

85. Koziel JE, Herbert BS. The telomerase inhibitor imetelstat alone, and in combination with trastuzumab, decreases the cancer stem cell population and self-renewal of HER2+ breast cancer cells. Breast Cancer Res Treat 2015;149:607-18.

86. Cosme-Blanco W, Shen MF, Lazar AJ, Pathak S, Lozano G, et al. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep 2007;8:497-503.

87. Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci U S A 2003;100:7737-42.

88. Griffith JK, Bryant JE, Fordyce CA, Gilliland FD, Joste NE, et al. Reduced telomere DNA content is correlated with genomic instability and metastasis in invasive human breast carcinoma. Breast Cancer Res Treat 1999;54:59-64.

89. Zeng X, Hernandez-Sanchez W, Xu M, Whited TL, Baus D, et al. Administration of a nucleoside analog promotes cancer cell death in a telomerase-dependent manner. Cell Rep 2018;23:3031-41.

90. Ruden M, Puri N. Novel anticancer therapeutics targeting telomerase. Cancer Treat Rev 2013;39:444-56.

91. Vonderheide RH. Telomerase as a universal tumor-associated antigen for cancer immunotherapy. Oncogene 2002;21:674-9.

92. Mender I, Gryaznov S, Dikmen ZG, Wright WE, Shay JW. Induction of telomere dysfunction mediated by the telomerase substrate precursor 6-thio-2’-deoxyguanosine. Cancer Discov 2015;5:82-95.

93. Zanetti M. A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat Rev Clin Oncol 2017;14:115-28.

94. Sandri S, Bobisse S, Moxley K, Lamolinara A, De Sanctis F, et al. Feasibility of telomerase-specific adoptive t-cell therapy for b-cell chronic lymphocytic leukemia and solid malignancies. Cancer Res 2016;76:2540-51.

95. Flynn RL, Cox KE, Jeitany M, Wakimoto H, Bryll AR, et al. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 2015;347:273-7.

96. Drosopoulos WC, Kosiyatrakul ST, Schildkraut CL. BLM helicase facilitates telomere replication during leading strand synthesis of telomeres. J Cell Biol 2015;210:191-208.

97. Pan X, Drosopoulos WC, Sethi L, Madireddy A, Schildkraut CL, et al. FANCM, BRCA1, and BLM cooperatively resolve the replication stress at the ALT telomeres. Proc Natl Acad Sci U S A 2017;114:E5940-E9.

98. Nguyen GH, Dexheimer TS, Rosenthal AS, Chu WK, Singh DK, et al. A small molecule inhibitor of the BLM helicase modulates chromosome stability in human cells. Chem Biol 2013;20:55-62.

99. Temime-Smaali N, Guittat L, Wenner T, Bayart E, Douarre C, et al. Topoisomerase IIIalpha is required for normal proliferation and telomere stability in alternative lengthening of telomeres. EMBO J 2008;27:1513-24.

100. Tsai HJ, Huang WH, Li TK, Tsai YL, Wu KJ, et al. Involvement of topoisomerase III in telomere-telomere recombination. J Biol Chem 2006;281:13717-23.

101. Ward RJ, Autexier C. Pharmacological telomerase inhibition can sensitize drug-resistant and drug-sensitive cells to chemotherapeutic treatment. Mol Pharmacol 2005;68:779-86.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/