1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74.

2. Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol 2015;25:198-213.

3. Granot Z, Fridlender ZG. Plasticity beyond cancer cells and the “Immunosuppressive Switch”. Cancer Res 2015;75:4441-5.

4. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, et al. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 2015;522:345-8.

5. Wang J, Knaut H. Chemokine signaling in development and disease. Development 2014;141:4199-205.

6. Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity 2012;36:705-16.

7. Karnoub AE, Weinberg RA. Chemokine networks and breast cancer metastasis. Breast Dis 2006;26:75-85.

8. Kiefer F, Siekmann AF. The role of chemokines and their receptors in angiogenesis. Cell Mol Life Sci 2011;68:2811-30.

9. Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H, et al. Control of chemokine-guided cell migration by ligand sequestration. Cell 2008;132:463-73.

10. Dona E, Barry JD, Valentin G, Quirin C, Khmelinskii A, et al. Directional tissue migration through a self-generated chemokine gradient. Nature 2013;503:285-9.

11. Venkiteswaran G, Lewellis SW, Wang J, Reynolds E, Nicholson C, et al. Generation and dynamics of an endogenous, self-generated signaling gradient across a migrating tissue. Cell 2013;155:674-87.

12. Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family: molecular perspectives. Front Immunol 2015;6:429.

13. Scala S. Molecular pathways: targeting the CXCR4-CXCL12 axis-untapped potential in the tumor microenvironment. Clin Cancer Res 2015;21:4278-85.

14. Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 2009;9:274-84.

15. Xue LJ, Mao XB, Ren LL, Chu XY. Inhibition of CXCL12/CXCR4 axis as a potential targeted therapy of advanced gastric carcinoma. Cancer Med 2017;6:1424-36.

16. Mitchell B, Mahalingam M. The CXCR4/CXCL12 axis in cutaneous malignancies with an emphasis on melanoma. Histol Histopathol 2014;29:1539-46.

17. Xu CZ, Wang PH, Yan XJ, Wang T, Chen D, et al. Expression of CXCR4 is associated with progression and invasion in patients with nasal-surface basal cell carcinoma. ORL J Otorhinolaryngol Relat Spec 2013;75:332-41.

18. Knopf A, Bahadori L, Fritsche K, Piontek G, Becker CC, et al. Primary tumor-associated expression of CXCR4 predicts formation of local and systemic recurrency in head and neck squamous cell carcinoma. Oncotarget 2017;8:112739-47.

19. Wald O. CXCR4 based therapeutics for non-small cell lung cancer (NSCLC). J Clin Med 2018;7:E303.

20. Xu C, Zhao H, Chen H, Yao Q. CXCR4 in breast cancer: oncogenic role and therapeutic targeting. Drug Des Devel Ther 2015;9:4953-64.

21. Figueras A, Alsina-Sanchis E, Lahiguera A, Abreu M, Muinelo-Romay L, et al. A role for CXCR4 in peritoneal and hematogenous ovarian cancer dissemination. Mol Cancer Ther 2018;17:532-43.

22. Bao Y, Wang Z, Liu B, Lu X, Xiong Y, et al. A feed-forward loop between nuclear translocation of CXCR4 and HIF-1alpha promotes renal cell carcinoma metastasis. Oncogene 2019;38:881-95.

23. Zhu WB, Zhao ZF, Zhou X. AMD3100 inhibits epithelial-mesenchymal transition, cell invasion, and metastasis in the liver and the lung through blocking the SDF-1alpha/CXCR4 signaling pathway in prostate cancer. J Cell Physiol 2019;234:11746-59.

24. Richardson PJ. CXCR4 and glioblastoma. Anticancer Agents Med Chem 2016;16:59-74.

25. Sand LG, Scotlandi K, Berghuis D, Snaar-Jagalska BE, Picci P, et al. CXCL14, CXCR7 expression and CXCR4 splice variant ratio associate with survival and metastases in Ewing sarcoma patients. Eur J Cancer 2015;51:2624-33.

26. Du W, Lu C, Zhu X, Hu D, Chen X, et al. Prognostic significance of CXCR4 expression in acute myeloid leukemia. Cancer Med 2019; doi: 10.1002/cam4.2535.

27. Choi WT, Yang Y, Xu Y, An J. Targeting chemokine receptor CXCR4 for treatment of HIV-1 infection, tumor progression, and metastasis. Curr Top Med Chem 2014;14:1574-89.

28. Guo F, Wang Y, Liu J, Mok SC, Xue F, et al. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 2016;35:816-26.

29. Sugihara H, Ishimoto T, Yasuda T, Izumi D, Eto K, et al. Cancer-associated fibroblast-derived CXCL12 causes tumor progression in adenocarcinoma of the esophagogastric junction. Med Oncol 2015;32:618.

30. Fearon DT. The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunol Res 2014;2:187-93.

31. Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 2013;110:20212-7.

32. Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G, et al. Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol 2011;89:311-7.

33. Contento RL, Molon B, Boularan C, Pozzan T, Manes S, et al. CXCR4-CCR5: a couple modulating T cell functions. Proc Natl Acad Sci U S A 2008;105:10101-6.

34. Strydom N, Rankin SM. Regulation of circulating neutrophil numbers under homeostasis and in disease. J Innate Immun 2013;5:304-14.

35. Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M, et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res 2004;64:8451-5.

36. Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest 2010;120:1151-64.

37. Hughes R, Qian BZ, Rowan C, Muthana M, Keklikoglou I, et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res 2015;75:3479-91.

38. Ping YF, Yao XH, Jiang JY, Zhao LT, Yu SC, et al. The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling. J Pathol 2011;224:344-54.

39. Beider K, Bitner H, Leiba M, Gutwein O, Koren-Michowitz M, et al. Multiple myeloma cells recruit tumor-supportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype. Oncotarget 2014;5:11283-96.

40. Gil M, Komorowski MP, Seshadri M, Rokita H, McGray AJ, et al. CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. J Immunol 2014;193:5327-37.

41. Guo ZS. The 2018 Nobel Prize in medicine goes to cancer immunotherapy (editorial for BMC cancer). BMC Cancer 2018;18:1086.

42. Chen IX, Chauhan VP, Posada J, Ng MR, Wu MW, et al. Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proc Natl Acad Sci U S A 2019;116:4558-66.

43. Patton EE, Dhillon P, Amatruda JF, Ramakrishnan L. Spotlight on zebrafish: translational impact. Dis Model Mech 2014;7:731-3.

44. Antonio N, Bonnelykke-Behrndtz ML, Ward LC, Collin J, Christensen IJ, et al. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO J 2015;34:2219-36.

45. Feng Y, Renshaw S, Martin P. Live imaging of tumor initiation in zebrafish larvae reveals a trophic role for leukocyte-derived PGE(2). Curr Biol 2012;22:1253-9.

46. Feng Y, Santoriello C, Mione M, Hurlstone A, Martin P. Live imaging of innate immune cell sensing of transformed cells in zebrafish larvae: parallels between tumor initiation and wound inflammation. PLoS Biol 2010;8:e1000562.

47. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn 1995;203:253-310.

48. Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 2011;117:e49-56.

49. Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 2002;248:307-18.

50. Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, et al. A transgenic zebrafish model of neutrophilic inflammation. Blood 2006;108:3976-8.

51. Gonzales AP, Yeh JR. Cas9-based genome editing in zebrafish. Methods Enzymol 2014;546:377-413.

52. Lawson ND, Wolfe SA. Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish. Dev Cell 2011;21:48-64.

53. Robertson AL, Holmes GR, Bojarczuk AN, Burgon J, Loynes CA, et al. A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism. Sci Transl Med 2014;6:225ra29.

54. Goessling W, North TE, Zon LI. New waves of discovery: modeling cancer in zebrafish. J Clin Oncol 2007;25:2473-9.

55. Ung CY, Lam SH, Gong Z. Comparative transcriptome analyses revealed conserved biological and transcription factor target modules between the zebrafish and human tumors. Zebrafish 2009;6:425-31.

56. Amatruda JF, Shepard JL, Stern HM, Zon LI. Zebrafish as a cancer model system. Cancer Cell 2002;1:229-31.

57. Letrado P, de Miguel I, Lamberto I, Diez-Martinez R, Oyarzabal J. Zebrafish: speeding up the cancer drug discovery process. Cancer Res 2018;78:6048-58.

58. van der Ent W, Veneman WJ, Groenewoud A, Chen L, Tulotta C, et al. Automation of technology for cancer research. Adv Exp Med Biol 2016;916:315-32.

59. Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 2005;4:35-44.

60. He SN, Lamers GEM, Beenakker JWM, Cui C, Ghotra VPS, et al. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J Pathol 2012;227:431-45.

61. Tulotta C, He S, Chen L, Groenewoud A, van der Ent W, et al. Imaging of human cancer cell proliferation, invasion, and micrometastasis in a Zebrafish xenogeneic engraftment model. Methods Mol Biol 2016;1451:155-69.

62. Tulotta C, He S, van der Ent W, Chen L, Groenewoud A, et al. Imaging cancer angiogenesis and metastasis in a Zebrafish embryo model. Adv Exp Med Biol 2016;916:239-63.

63. Astone M, Dankert EN, Alam SK, Hoeppner LH. Fishing for cures: the alLURE of using zebrafish to develop precision oncology therapies. NPJ Precis Oncol 2017;1:39.

64. Gaudenzi G, Albertelli M, Dicitore A, Wurth R, Gatto F, et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in neuroendocrine tumors. Endocrine 2017;57:214-9.

65. Mercatali L, La Manna F, Groenewoud A, Casadei R, Recine F, et al. Development of a patient-derived xenograft (PDX) of breast cancer bone metastasis in a Zebrafish model. Int J Mol Sci 2016;17:E1375.

66. Wu JQ, Zhai J, Li CY, Tan AM, Wei P, et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in gastric cancer. J Exp Clin Cancer Res 2017;36:160.

67. Tulotta C, Groenewoud A, Snaar-Jagalska BE, Ottewell P. Animal models of breast cancer bone metastasis. Methods Mol Biol 2019;1914:309-30.

68. Vazquez Rodriguez G, Abrahamsson A, Jensen LD, Dabrosin C. Estradiol promotes breast cancer cell migration via recruitment and activation of neutrophils. Cancer Immunol Res 2017;5:234-47.

69. Kiener M, Chen L, Krebs M, Grosjean J, Klima I, et al. miR-221-5p regulates proliferation and migration in human prostate cancer cells and reduces tumor growth in vivo. BMC Cancer 2019;19:627.

70. Ghotra VP, He S, van der Horst G, Nijhoff S, de Bont H, et al. SYK is a candidate kinase target for the treatment of advanced prostate cancer. Cancer Res 2015;75:230-40.

71. Canella A, Welker AM, Yoo JY, Xu J, Abas FS, et al. Efficacy of Onalespib, a long-acting second-generation HSP90 inhibitor, as a single agent and in combination with temozolomide against malignant gliomas. Clin Cancer Res 2017;23:6215-26.

72. Vandercappellen J, Van Damme J, Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Lett 2008;267:226-44.

73. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996;382:635-8.

74. Rosu-Myles M, Gallacher L, Murdoch B, Hess DA, Keeney M, et al. The human hematopoietic stem cell compartment is heterogeneous for CXCR4 expression. Proc Natl Acad Sci U S A 2000;97:14626-31.

75. Day RB, Link DC. Regulation of neutrophil trafficking from the bone marrow. Cell Mol Life Sci 2012;69:1415-23.

76. Sallusto F, Baggiolini M. Chemokines and leukocyte traffic. Nat Immunol 2008;9:949-52.

77. Sallusto F, Mackay CR, Lanzavecchia A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol 2000;18:593-620.

78. Bussmann J, Raz E. Chemokine-guided cell migration and motility in zebrafish development. EMBO J 2015;34:1309-18.

79. Vicenzi E, Lio P, Poli G. The puzzling role of CXCR4 in human immunodeficiency virus infection. Theranostics 2013;3:18-25.

80. Gulino AV. WHIM syndrome: a genetic disorder of leukocyte trafficking. Curr Opin Allergy Clin Immunol 2003;3:443-50.

81. Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 2004;14:171-9.

82. Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res 2014;124:31-82.

83. Saini V, Marchese A, Majetschak M. CXC chemokine receptor 4 is a cell surface receptor for extracellular ubiquitin. J Biol Chem 2010;285:15566-76.

84. Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, et al. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 2007;13:587-96.

85. Lourenco S, Teixeira VH, Kalber T, Jose RJ, Floto RA, et al. Macrophage migration inhibitory factor-CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. J Immunol 2015;194:3463-74.

86. Shin HN, Moon HH, Ku JL. Stromal cell-derived factor-1alpha and macrophage migration-inhibitory factor induce metastatic behavior in CXCR4-expressing colon cancer cells. Int J Mol Med 2012;30:1537-43.

87. Lu J, Chatterjee M, Schmid H, Beck S, Gawaz M. CXCL14 as an emerging immune and inflammatory modulator. J Inflamm (Lond) 2016;13:1.

88. Muller A, Homey B, Soto H, Ge N, Catron D, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410:50-6.

89. Weidle UH, Birzele F, Kollmorgen G, Ruger R. Molecular mechanisms of bone metastasis. Cancer Genomics Proteomics 2016;13:1-12.

90. Ottewell PD, O’Donnell L, Holen I. Molecular alterations that drive breast cancer metastasis to bone. Bonekey Rep 2015;4:643.

91. Martinez-Ordonez A, Seoane S, Cabezas P, Eiro N, Sendon-Lago J, et al. Breast cancer metastasis to liver and lung is facilitated by Pit-1-CXCL12-CXCR4 axis. Oncogene 2018;37:1430-44.

92. Seoane S, Martinez-Ordonez A, Eiro N, Cabezas-Sainz P, Garcia-Caballero L, et al. POU1F1 transcription factor promotes breast cancer metastasis via recruitment and polarization of macrophages. J Pathol 2019;249:381-94.

93. Tulotta C, Stefanescu C, Beletkaia E, Bussmann J, Tarbashevich K, et al. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model. Dis Model Mech 2016;9:141-53.

94. Cook AM, Lesterhuis WJ, Nowak AK, Lake RA. Chemotherapy and immunotherapy: mapping the road ahead. Curr Opin Immunol 2016;39:23-9.

95. Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, et al. Classification of current anticancer immunotherapies. Oncotarget 2014;5:12472-508.

96. Tchernychev B, Ren Y, Sachdev P, Janz JM, Haggis L, et al. Discovery of a CXCR4 agonist pepducin that mobilizes bone marrow hematopoietic cells. Proc Natl Acad Sci U S A 2010;107:22255-9.

97. Walters KB, Green JM, Surfus JC, Yoo SK, Huttenlocher A. Live imaging of neutrophil motility in a zebrafish model of WHIM syndrome. Blood 2010;116:2803-11.

98. Isles HM, Herman KD, Robertson AL, Loynes CA, Prince LR, et al. The CXCL12/CXCR4 signaling axis retains neutrophils at inflammatory sites in Zebrafish. Front Immunol 2019;10:1784.

99. Tulotta C, Stefanescu C, Chen Q, Torraca V, Meijer AH, et al. CXCR4 signaling regulates metastatic onset by controlling neutrophil motility and response to malignant cells. Sci Rep 2019;9:2399.

100. Demicheli R, Retsky MW, Hrushesky WJ, Baum M, Gukas ID. The effects of surgery on tumor growth: a century of investigations. Ann Oncol 2008;19:1821-8.

101. Sounni NE, Noel A. Targeting the tumor microenvironment for cancer therapy. Clin Chem 2013;59:85-93.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)


All published articles are preserved here permanently:


All published articles are preserved here permanently: