1. Lin NU. Breast cancer brain metastases: new directions in systemic therapy. ecancermedicalscience 2013;7:307.

2. Palmieri D, Smith QR, Lockman PR, Bronder J, Gril B, et al. Brain metastases of breast cancer. Breast Dis 2006;26:139-47.

3. Yeh RH, Yu JC, Chu CH, Ho CL, Kao HW, et al. Distinct MR imaging features of triple-negative breast cancer with brain metastasis. J Neuroimaging 2015;25:474-81.

4. Steeg PS, Camphausen KA, Smith QR. Brain metastases as preventive and therapeutic targets. Nat Rev Cancer 2011;11:352-63.

5. Lin NU, Claus E, Sohl J, Razzak AR, Arnaout A, et al. Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer: high incidence of central nervous system metastases. Cancer 2008;113:2638-45.

6. Aversa C, Rossi V, Geuna E, Martinello R, Milani A, et al. Metastatic breast cancer subtypes and central nervous system metastases. Breast 2014;23:623-8.

7. Clayton AJ, Danson S, Jolly S, Ryder WDJ, Burt PA, et al. Incidence of cerebral metastases in patients treated with trastuzumab for metastatic breast cancer. Br J Cancer 2004;91:639-43.

8. Witzel I, Oliveira-Ferrer L, Pantel K, Muller V, Wikman H. Breast cancer brain metastases: biology and new clinical perspectives. Breast Cancer Res 2016;18:8.

9. Lin X, DeAngelis LM. Treatment of brain metastases. J Clin Oncol 2015;33:3475-84.

10. Kotecki N, Lefranc F, Devriendt D, Awada A. Therapy of breast cancer brain metastases: challenges, emerging treatments and perspectives. Ther Adv Med Oncol 2018;10:1758835918780312.

11. Adkins CE, Mohammad AS, Terrell-Hall TB, Dolan EL, Shah N, et al. Characterization of passive permeability at the blood-tumor barrier in five preclinical models of brain metastases of breast cancer. Clin Exp Metastasis 2016;33:373-83.

12. O'Sullivan CC, Davarpanah NN, Abraham J, Bates SE. Current challenges in the management of breast cancer brain metastases. Semin Oncol 2017;44:85-100.

13. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 2004;16:1-13.

14. Cook LJ, Freedman J. Brain tumors. New York: The Rosen Publishing Group; 2011.

15. Dauchy S, Miller F, Couraud PO, Weaver RJ, Weksler B, et al. Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem Pharmacol 2009;77:897-909.

16. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010;37:13-25.

17. Van Tellingen O, Yetkin-Arik B, De Gooijer MC, Wesseling P, Wurdinger T, et al. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 2015;19:1-12.

18. Dong X. Current strategies for brain drug delivery. Theranostics 2018;8:1481-93.

19. Rip J, Schenk GJ, de Boer AG. Differential receptor-mediated drug targeting to the diseased brain. Expert Opin Drug Deliv 2009;6:227-37.

20. Abbott NJ, Friedman A. Overview and introduction: The blood-brain barrier in health and disease. Epilepsia 2012;53:1-6.

21. Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 2016;15:275-92.

22. Anderson A, Choy C, Neman J, Duenas MJ, Jandial R, et al. Metastatic breast cancer to the brain: a clinical primer for translational investigation. Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2013.

23. Weber GF. Molecular mechanisms of metastasis. Cancer Lett 2008;270:181-90.

24. Banys-Paluchowski M, Krawczyk N, Meier-Stiegen F, Fehm T. Circulating tumor cells in breast cancer - current status and perspectives. Crit Rev Oncol Hematol 2016;97:22-9.

25. Prieto-Vila M, Takahashi RU, Usuba W, Kohama I, Ochiya T. Drug resistance driven by cancer stem cells and their niche. Int J Mol Sci 2017;18:E2574.

26. Rahmathulla G, Toms SA, Weil RJ. The molecular biology of brain metastasis. J Oncol 2012;2012:723541.

27. Seoane J, De Mattos-Arruda L. Brain metastasis: new opportunities to tackle therapeutic resistance. Mol Oncol 2014;8:1120-31.

28. Jin X, Mu P. Targeting breast cancer metastasis. Breast Cancer (Auckl) 2015;9:23-34.

29. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009;459:1005-9.

30. Leek RD, Harris AL, Lewis CE. Cytokine networks in solid human tumors: regulation of angiogenesis. J Leukoc Biol 1994;56:423-35.

31. Cheng X, Hung MC. Breast cancer brain metastases. Cancer Metastasis Rev 2007;26:635-43.

32. Lee BC, Lee TH, Avraham S, Avraham HK. Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2004;2:327-38.

33. Avraham HK, Jiang S, Fu Y, Nakshatri H, Ovadia H, et al. Angiopoietin-2 mediates blood-brain barrier impairment and colonization of triple-negative breast cancer cells in brain. J Pathol 2014;232:369-81.

34. Ahmad SA, Liu W, Jung YD, Fan F, Wilson M, et al. The effects of angiopoietin-1 and -2 on tumor growth and angiogenesis in human colon cancer. Cancer Res 2001;61:1255-9.

35. Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XHF, et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 2014;156:1002-16.

36. Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, et al. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer cell 2016;30:836-48.

37. Lin NU, Bellon JR, Winer EP. CNS metastases in breast cancer. J Clin Oncol 2004;22:3608-17.

38. Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 2010;16:5664-78.

39. Villanueva MT. Drug therapy: smuggling trastuzumab into the brain. Nat Rev Clin Oncol 2013;10:669.

40. Yonemori K, Tsuta K, Ono M, Shimizu C, Hirakawa A, et al. Disruption of the blood brain barrier by brain metastases of triple-negative and basal-type breast cancer but not HER2/neu-positive breast cancer. Cancer 2010;116:302-8.

41. Brosnan EM, Anders CK. Understanding patterns of brain metastasis in breast cancer and designing rational therapeutic strategies. Ann Transl Med 2018;6:163.

42. ELAmrawy F, Othman AA, Adkins C, Helmy A, Nounou MI. Tailored nanocarriers and bioconjugates for combating glioblastoma and other brain tumors. J Cancer Metastasis Treat 2016;2:112-22.

43. Kazantsev AG, Outeiro TF. Drug discovery for CNS disorders: from bench to bedside. CNS Neurol Disord Drug Targets 2010;9:668.

44. Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 2010;37:48-57.

45. Pardridge WM. Drug delivery to the brain. J Cereb Blood Flow Metab 1997;17:713-31.

46. Barar J, Rafi MA, Pourseif MM, Omidi Y. Blood-brain barrier transport machineries and targeted therapy of brain diseases. BioImpacts 2016;6:225-48.

47. Dhankhar R, Vyas SP, Jain AK, Arora S, Rath G, et al. Advances in novel drug delivery strategies for breast cancer therapy. Artif Cells Blood Substit Immobil Biotechnol 2010;38:230-49.

48. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46:6387-92.

49. Kobayashi H, Turkbey B, Watanabe R, Choyke PL. Cancer drug delivery: considerations in the rational design of nanosized bioconjugates. Bioconjug Chem 2014;25:2093-100.

50. Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Experimental and molecular pathology 2009;86:215-23.

51. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015;33:941-51.

52. Liechty WB, Peppas NA. Expert opinion: responsive polymer nanoparticles in cancer therapy. Eur J Pharm Biopharm 2012;80:241-6.

53. Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008;7:771-82.

54. Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 2012;161:175-87.

55. Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017;12:7291-309.

56. Weissenbock A, Wirth M, Gabor F. WGA-grafted PLGA-nanospheres: preparation and association with Caco-2 single cells. J Control Release 2004;99:383-92.

57. Wesselinova D. Current major cancer targets for nanoparticle systems. Curr Cancer Drug Targets 2011;11:164-83.

58. De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 2008;3:133-49.

59. Perche F, Torchilin VP. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv 2013;2013:705265.

60. Mohammad AS, Griffith JI, Adkins CE, Shah N, Sechrest E, et al. Liposomal irinotecan accumulates in metastatic lesions, crosses the blood-tumor barrier (BTB), and prolongs survival in an experimental model of brain metastases of triple negative breast cancer. Pharm Res 2018;35:31.

61. Hamidi M, Azadi A, Rafiei P. Pharmacokinetic consequences of pegylation. Drug Delivery 2006;13:399-409.

62. Salmaso S, Caliceti P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv 2013;2013:374252.

63. Vail DM, Amantea MA, Colbern GT, Martin FJ, Hilger RA, et al. Pegylated liposomal doxorubicin: proof of principle using preclinical animal models and pharmacokinetic studies. Semin Oncol 2004;31:16-35.

64. Yokoyama M, Miyauchi M, Yamada N, Okano T, Sakurai Y, et al. Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res 1990;50:1693-700.

65. James ND, Coker RJ, Tomlinson D, Harris JR, Gompels M, et al. Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi's sarcoma in AIDS. Clin Oncol (R Coll Radiol) 1994;6:294-6.

66. Muggia FM. Doxil in breast cancer. J Clin Oncol 1998;16:811-2.

67. Porche DJ. Liposomal doxorubicin (Doxil). J Assoc Nurses AIDS Care 1996;7:55-9.

68. Anders CK, Adamo B, Karginova O, Deal AM, Rawal S, et al. Pharmacokinetics and efficacy of PEGylated liposomal doxorubicin in an intracranial model of breast cancer. PLoS One 2013;8:e61359.

69. Zhao X, Bentley MD, Ren Z, Viegas TX. Multi-arm polymer prodrugs. In: Therapeutics N, editor. The United States Patent and Trademark Office. US: Nektar Therapeutics; 2013.

70. Zhang W. Method for preparing a polymer conjugate. USA: Nektar therapeutics; 2013.

71. Minamitani EL, Zappe H, Bossard MJ, Roczniak SO, Liu X. Polymer conjugates of kiss1 peptides. USA: Nektar therapeutics; 2011.

72. Hoch U, Eldon MA, Leung ACF. Treatment of patients suffering from cancer. In: Therapeutics N, editor. The United States Patent and Trademark Office. US: Nektar Therapeutics; 2013.

73. Fishburn CS, Lechuga-Ballesteros D, Viegas T, Kuo M, Song Y, et al. Chemically modified small molecules. In: Therapeutics N, editor. The United States Patent and Trademark Office. US: Nektar Therapeutics; 2011.

74. Eldon MA, Harite SS, Barker TL. Compositions and methods for achieving sustained therapeutic drug concentrations in a subject. In: Therapeutics N, editor. The United States Patent and Trademark Office. US: Nektar Therapeutics; 2011.

75. Chen YC, Chiang CF, Chen LF, Liang PC, Hsieh WY, et al. Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-penetrating cancer cell-targeting delivery system. Biomaterials 2014;35:4066-81.

76. Adkins CE, Nounou MI, Hye T, Mohammad AS, Terrell-Hall T, et al. NKTR-102 Efficacy versus irinotecan in a mouse model of brain metastases of breast cancer. BMC Cancer 2015;15:685.

77. Gaillard PJ. 2-BBB Products’ Pipline. Leiden Bio Science Park, The Netherlands: 2-BBB Medicines BV; 2018.

78. Geldenhuys W, Wehrung D, Groshev A, Hirani A, Sutariya V. Brain-targeted delivery of doxorubicin using glutathione-coated nanoparticles for brain cancers. Pharm Dev Technol 2015;20:497-506.

79. Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater 2013;12:967-77.

80. Wang G, Jia T, Xu X, Chang L, Zhang R, et al. Novel miR-122 delivery system based on MS2 virus like particle surface displaying cell-penetrating peptide TAT for hepatocellular carcinoma. Oncotarget 2016;7:59402-16.

81. Zhang L, Sullivan PS, Goodman JC, Gunaratne PH, Marchetti D. MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res 2011;71:645-54.

82. Rodriguez-Devora JI, Ambure S, Shi Z-D, Yuan Y, Sun W, et al. Physically facilitating drug-delivery systems. Therapeutic delivery 2012;3:125-39.

83. Davalos RV, Rossmeisl JH, Garcia PA. Acute blood-brain barrier disruption using electrical energy based therapy. Virginia Tech Intellectual Properties, Inc.; 2014.

84. Park EJ, Zhang YZ, Vykhodtseva N, McDannold N. Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. J Control Release 2012;163:277-84.

85. Kobus T, Zervantonakis IK, Zhang Y, McDannold NJ. Growth inhibition in a brain metastasis model by antibody delivery using focused ultrasound-mediated blood-brain barrier disruption. J Control Release 2016;238:281-8.

86. Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proceedings of the National Academy of Sciences 2006;103:11719-23.

87. Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proc Natl Acad Sci U S A 2006;103:11719-23.

88. Nobs L, Buchegger F, Gurny R, Allemann E. Poly(lactic acid) nanoparticles labeled with biologically active Neutravidin for active targeting. Eur J Pharm Biopharm 2004;58:483-90.

89. Prinzen L, Miserus RJ, Dirksen A, Hackeng TM, Deckers N, et al. Optical and magnetic resonance imaging of cell death and platelet activation using annexin a5-functionalized quantum dots. Nano Lett 2007;7:93-100.

90. Wang YY, Lui PC, Li JY. Receptor-mediated therapeutic transport across the blood-brain barrier. Immunotherapy 2009;1:983-93.

91. Jones AR, Shusta EV. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res 2007;24:1759-71.

92. Lin NU. Targeted therapies in brain metastases. Curr Treat Options Neurol 2014;16:276.

93. Beliveau R. Method for transporting a compound across the blood-brain barrier. AngioChem Inc.; 2003.

94. Regina A, Demeule M, Che C, Lavallee I, Poirier J, et al. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol 2008;155:185-97.

95. Regina A, Demeule M, Tripathy S, Lord-Dufour S, Currie JC, et al. ANG4043, a novel brain-penetrant peptide-mAb conjugate, is efficacious against HER2-positive intracranial tumors in mice. Mol Cancer Ther 2015;14:129-40.

96. Thomas FC, Taskar K, Rudraraju V, Goda S, Thorsheim HR, et al. Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res 2009;26:2486-94.

97. Orthmann A, Zeisig R, Suss R, Lorenz D, Lemm M, et al. Treatment of experimental brain metastasis with MTO-liposomes: impact of fluidity and LRP-targeting on the therapeutic result. Pharm Res 2012;29:1949-59.

98. Orthmann A, Peiker L, Fichtner I, Hoffmann A, Hilger RA, et al. Improved treatment of MT-3 breast cancer and brain metastases in a mouse xenograft by LRP-targeted oxaliplatin liposomes. J Biomed Nanotechnol 2016;12:56-68.

99. Demeule M, Poirier J, Jodoin J, Bertrand Y, Desrosiers RR, et al. High transcytosis of melanotransferrin (P97) across the blood-brain barrier. J Neurochem 2002;83:924-33.

100. Dorries R. The role of T-cell-mediated mechanisms in virus infections of the nervous system. Curr Top Microbiol Immunol 2001;253:219-45.

101. Nounou MI, Adkins CE, Rubinchik E, Terrell-Hall TB, Afroz M, et al. Anti-cancer antibody trastuzumab-melanotransferrin conjugate (BT2111) for the treatment of metastatic HER2+ breast cancer tumors in the brain: an in-vivo study. Pharm Res 2016;33:2930-42.

102. Ruoslahti E. Tumor penetrating peptides for improved drug delivery. Advanced Drug Delivery Reviews 2017;110-111:3-12.

103. Teesalu T, Sugahara KN, Ruoslahti E. Tumor-penetrating peptides. Front Oncol 2013;3:216.

104. Hamilton AM, Aidoudi-Ahmed S, Sharma S, Kotamraju VR, Foster PJ, et al. Nanoparticles coated with the tumor-penetrating peptide iRGD reduce experimental breast cancer metastasis in the brain. J Mol Med (Berl) 2015;93:991-1001.

105. Pardridge WM. Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res 1998;23:635-44.

106. Tsuji A. Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems. NeuroRx 2005;2:54-62.

107. Chiou B, Neal EH, Bowman AB, Lippmann ES, Simpson IA, et al. Pharmaceutical iron formulations do not cross a model of the human blood-brain barrier. PloS One 2018;13:e0198775.

108. Lameijer MA, Tang J, Nahrendorf M, Beelen RHJ, Mulder WJM. Monocytes and macrophages as nanomedicinal targets for improved diagnosis and treatment of disease. Expert Rev Mol Diagn 2013;13:567-80.

109. Choi M-R, Bardhan R, Stanton-Maxey KJ, Badve S, Nakshatri H, et al. Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse. Cancer nanotechnol 2012;3:47-54.

110. Stalmans S, Bracke N, Wynendaele E, Gevaert B, Peremans K, et al. Cell-penetrating peptides selectively cross the blood-brain barrier in vivo. PLoS One 2015;10:e0139652.

111. Mae M, Langel U. Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr Opin Pharmacol 2006;6:509-14.

112. Morshed RA, Muroski ME, Dai Q, Wegscheid ML, Auffinger B, et al. Cell-penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer. Mol Pharm 2016;13:1843-54.

113. Fu B, Long W, Zhang Y, Zhang A, Miao F, et al. Enhanced antitumor effects of the BRBP1 compound peptide BRBP1-TAT-KLA on human brain metastatic breast cancer. Sci Rep 2015;5:8029.

114. Meyers JD, Doane T, Burda C, Basilion JP. Nanoparticles for imaging and treating brain cancer. Nanomedicine (Lond) 2013;8:123-43.

115. Kunjachan S, Pola R, Gremse F, Theek B, Ehling J, et al. Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines. Nano Lett 2014;14:972-81.

116. Golombek SK, May JN, Theek B, Appold L, Drude N, et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev 2018;130:17-38.

117. Baetke SC, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol 2015;88:20150207.

118. Kiessling F, Mertens ME, Grimm J, Lammers T. Nanoparticles for imaging: top or flop? Radiology 2014;273:10-28.

119. Kunjachan S, Rychlik B, Storm G, Kiessling F, Lammers T. Multidrug resistance: physiological principles and nanomedical solutions. Adv Drug Deliv Rev 2013;65:1852-65.

120. Lammers T, Rizzo LY, Storm G, Kiessling F. Personalized nanomedicine. Clin Cancer Res 2012;18:4889-94.

121. Devarajan PV, Jindal AB, Patil RR, Mulla F, Gaikwad RV, et al. Particle shape: a new design parameter for passive targeting in splenotropic drug delivery. J Pharm Sci 2010;99:2576-81.

122. Lammers T, Hennink WE, Storm G. Tumour-targeted nanomedicines: principles and practice. Br J Cancer 2008;99:392-7.

123. Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 2018;9:1410.

124. Siegrist S, Corek E, Detampel P, Sandstrom J, Wick P, et al. Preclinical hazard evaluation strategy for nanomedicines. Nanotoxicology 2018:1-27.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)


All published articles are preserved here permanently:


All published articles are preserved here permanently: