REFERENCES

1. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011;331:1559-64.

2. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009;139:871-90.

3. Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell 2016;166:21-45.

4. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 2019;20:69-84.

5. Pignatelli J, Goswami S, Jones JG, Rohan TE, Pieri E, et al. Invasive breast carcinoma cells from patients exhibit MenaINV- and macrophage-dependent transendothelial migration. Sci Signal 2014;7:ra112.

6. Liu F, Gu LN, Shan BE, Geng CZ, Sang MX. Biomarkers for EMT and MET in breast cancer: an update. Oncol Lett 2016;12:4869-76.

7. Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J, et al. EMT subtype Influences epithelial plasticity and mode of cell migration. Dev Cell 2018;45:681-95.e4.

8. Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, et al. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 2004;64:8585-94.

9. Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 2009;10:445-57.

10. Polette M, Nawrocki-Raby B, Gilles C, Clavel C, Birembaut P. Tumour invasion and matrix metalloproteinases. Crit Rev Oncol Hematol 2004;49:179-86.

11. Juncker-Jensen A, Deryugina EI, Rimann I, Zajac E, Kupriyanova TA, et al. Tumor MMP-1 activates endothelial PAR1 to facilitate vascular intravasation and metastatic dissemination. Cancer Res 2013;73:4196-211.

12. Francart ME, Lambert J, Vanwynsberghe AM, Thompson EW, Bourcy M, et al. Epithelial-mesenchymal plasticity and circulating tumor cells: travel companions to metastases. Dev Dyn Off Publ Am Assoc Anat 2018;247:432-50.

13. Bourcy M, Suarez-Carmona M, Lambert J, Francart ME, Schroeder H, et al. Tissue factor induced by epithelial-mesenchymal transition triggers a procoagulant state that drives metastasis of circulating tumor cells. Cancer Res 2016;76:4270-82.

14. Papadaki MA, Stoupis G, Theodoropoulos PA, Mavroudis D, Georgoulias V, et al. Circulating tumor cells with stemness and epithelial-to-mesenchymal transition features are chemoresistant and predictive of poor outcome in metastatic breast cancer. Mol Cancer Ther 2019;18:437-47.

15. Micalizzi DS, Maheswaran S, Haber DA. A conduit to metastasis: circulating tumor cell biology. Genes Dev 2017;31:1827-40.

16. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 2015;527:525-30.

17. Fischer KR, Durrans A, Lee S, Sheng J, Li F, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 2015;527:472-6.

18. Krebs AM, Mitschke J, Lasierra Losada M, Schmalhofer O, Boerries M, et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol 2017;19:518-29.

19. Aiello NM, Brabletz T, Kang Y, Nieto MA, Weinberg RA, et al. Upholding a role for EMT in pancreatic cancer metastasis. Nature 2017;547:E7-8.

20. Ye X, Brabletz T, Kang Y, Longmore GD, Nieto MA, et al. Upholding a role for EMT in breast cancer metastasis. Nature 2017;547:E1-3.

21. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer 2018;18:128-34.

22. Saunders LR, McClay DR. Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition. Dev Camb Engl 2014;141:1503-13.

23. Jolly MK, Ware KE, Gilja S, Somarelli JA, Levine H. EMT and MET: necessary or permissive for metastasis? Mol Oncol 2017;11:755-69.

24. Chaudhury A, Chander P, Howe PH. Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: focus on hnRNP E1’s multifunctional regulatory roles. RNA 2010;16:1449-62.

25. Aasheim HC, Loukianova T, Deggerdal A, Smeland EB. Tissue specific expression and cDNA structure of a human transcript encoding a nucleic acid binding [oligo(dC)] protein related to the pre-mRNA binding protein K. Nucleic Acids Res 1994;22:959-64.

26. Leffers H, Dejgaard K, Celis JE. Characterisation of two major cellular poly(rC)-binding human proteins, each containing three K-homologous (KH) domains. Eur J Biochem 1995;230:447-53.

27. Dejgaard K, Leffers H. Characterisation of the nucleic-acid-binding activity of KH domains. Different properties of different domains. Eur J Biochem 1996;241:425-31.

28. Brown AS, Mohanty BK, Howe PH. Identification and characterization of an hnRNP E1 translational silencing motif. Nucleic Acids Res 2016;44:5892-907.

29. Chkheidze AN, Liebhaber SA. A novel set of nuclear localization signals determine distributions of the alphaCP RNA-binding proteins. Mol Cell Biol 2003;23:8405-15.

30. Grelet S, Link LA, Howley B, Obellianne C, Palanisamy V, et al. A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression. Nat Cell Biol 2017;19:1105-15.

31. van der Houven van Oordt W, Diaz-Meco MT, Lozano J, Krainer AR, Moscat J, et al. The MKK(3/6)-p38-signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation. J Cell Biol 2000;149:307-16.

32. Tennyson CN, Klamut HJ, Worton RG. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 1995;9:184-90.

33. Tripathi V, Sixt KM, Gao S, Xu X, Huang J, et al. Direct regulation of alternative splicing by SMAD3 through PCBP1 is essential to the tumor-promoting role of TGF-β. Mol Cell 2016;64:549-64.

34. Chaudhury A, Hussey GS, Ray PS, Jin G, Fox PL, et al. TGF-beta-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nat Cell Biol 2010;12:286-93.

35. Hussey GS, Chaudhury A, Dawson AE, Lindner DJ, Knudsen CR, et al. Identification of an mRNP complex regulating tumorigenesis at the translational elongation step. Mol Cell 2011;41:419-31.

36. Kim SS, Pandey KK, Choi HS, Kim SY, Law PY, et al. Poly(C) binding protein family is a transcription factor in μ-opioid receptor gene expression. Mol Pharmacol 2005;68:729-36.

37. Thakur S, Nakamura T, Calin G, Russo A, Tamburrino JF, et al. Regulation of BRCA1 transcription by specific single-stranded DNA binding factors. Mol Cell Biol 2003;23:3774-87.

38. Meng Q, Rayala SK, Gururaj AE, Talukder AH, O'Malley BW, et al. Signaling-dependent and coordinated regulation of transcription, splicing, and translation resides in a single coregulator, PCBP1. Proc Natl Acad Sci U S A 2007;104:5866-71.

39. Shi H, Li H, Yuan R, Guan W, Zhang X, et al. PCBP1 depletion promotes tumorigenesis through attenuation of p27Kip1 mRNA stability and translation. J Exp Clin Cancer Res 2018;37:187.

40. Ho JJ, Robb GB, Tai SC, Turgeon PJ, Mawji IA, et al. Active stabilization of human endothelial nitric oxide synthase mRNA by hnRNP E1 protects against antisense RNA and microRNAs. Mol Cell Biol 2013;33:2029-46.

41. Cho SJ, Jung YS, Chen X. Poly (C)-binding protein 1 regulates p63 expression through mRNA stability. PLoS One 2013;8:e71724.

42. Jolly MK, Boareto M, Debeb BG, Aceto N, Farach-Carson MC, et al. Inflammatory breast cancer: a model for investigating cluster-based dissemination. NPJ Breast Cancer 2017;3:21.

43. Olsen JR, Oyan AM, Rostad K, Hellem MR, Liu J, et al. p63 attenuates epithelial to mesenchymal potential in an experimental prostate cell model. PLoS One 2013;8:e62547.

44. Hwang CK, Wagley Y, Law PY, Wei LN, Loh HH. Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP). Gene 2017;598:113-30.

45. Tian B, Manley JL. Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol 2017;18:18-30.

46. Wang Z, Day N, Trifillis P, Kiledjian M. An mRNA stability complex functions with Poly(A)-binding protein to stabilize mRNA in vitro. Mol Cell Biol 1999;19:4552-60.

47. Jenal M, Elkon R, Loayza-Puch F, van Haaften G, Kühn U, et al. The Poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell 2012;149:538-53.

48. Grelet S, Andries V, Polette M, Gilles C, Staes K, et al. The human NANOS3 gene contributes to lung tumour invasion by inducing epithelial-mesenchymal transition. J Pathol 2015;23:25-37.

49. Grelet S, McShane A, Geslain R, Howe PH. Pleiotropic roles of non-coding RNAs in TGF-β-mediated epithelial-mesenchymal transition and their functions in tumor progression. Cancers 2017;9:E75.

50. Wang H, Vardy LA, Tan CP, Loo JM, Guo K, et al. PCBP1 suppresses the translation of metastasis-associated PRL-3 phosphatase. Cancer Cell 2010;18:52-62.

51. Waerner T, Alacakaptan M, Tamir I, Oberauer R, Gal A, et al. ILEI: a cytokine essential for EMT, tumor formation, and late events in metastasis in epithelial cells. Cancer Cell 2006;10:227-39.

52. Cursons J, Pillman KA, Scheer KG, Gregory PA, Foroutan M, et al. Combinatorial targeting by MicroRNAs Co-ordinates post-transcriptional control of EMT. Cell Syst 2018;7:77-91.e7.

53. Hussey GS, Link LA, Brown AS, Howley BV, Chaudhury A, et al. Establishment of a TGFβ-induced post-transcriptional EMT gene signature. PLoS One 2012;7:e52624.

54. Prunier C, Howe PH. Disabled-2 (Dab2) is required for transforming growth factor beta-induced epithelial to mesenchymal transition (EMT). J Biol Chem 2005;280:17540-8.

55. Song Q, Sheng W, Zhang X, Jiao S, Li F. ILEI drives epithelial to mesenchymal transition and metastatic progression in the lung cancer cell line A549. Tumour Biol 2014;35:1377-82.

56. Wells SE, Hillner PE, Vale RD, Sachs AB. Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 1998;2:135-40.

57. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008;456:470-6.

58. Paronetto MP, Passacantilli I, Sette C. Alternative splicing and cell survival: from tissue homeostasis to disease. Cell Death Differ 2016;23:1919-29.

59. Singh RK, Cooper TA. Pre-mRNA splicing in disease and therapeutics. Trends Mol Med 2012;18:472-82.

60. Song X, Zeng Z, Wei H, Wang Z. Alternative splicing in cancers: from aberrant regulation to new therapeutics. Semin Cell Dev Biol 2018;75:13-22.

61. Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, et al. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science 2015;347:1254806.

62. Zhang T, Huang XH, Dong L, Hu D, Ge C, et al. PCBP-1 regulates alternative splicing of the CD44 gene and inhibits invasion in human hepatoma cell line HepG2 cells. Mol Cancer 2010;9:72.

63. Brown RL, Reinke LM, Damerow MS, Perez D, Chodosh LA, et al. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest 2011;121:1064-74.

64. Akker SA, Misra S, Aslam S, Morgan EL, Smith PJ, et al. Pre-spliceosomal binding of U1 small nuclear ribonucleoprotein (RNP) and heterogenous nuclear RNP E1 is associated with suppression of a growth hormone receptor pseudoexon. Mol Endocrinol Baltim Md 2007;21:2529-40.

65. Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop - a motor of cellular plasticity in development and cancer? EMBO Rep 2010;11:670-7.

66. Lu M, Jolly MK, Levine H, Onuchic JN, Ben-Jacob E. MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc Natl Acad Sci U S A 2013;110:18144-9.

67. Link LA, Howley BV, Hussey GS, Howe PH. PCBP1/HNRNP E1 protects chromosomal integrity by translational regulation of CDC27. Mol Cancer Res 2016;14:634-46.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/