REFERENCES
1. Zhang P, Monteiro da Silva G, Deatherage C, Burd C, DiMaio D. Cell-penetrating peptide mediates intracellular membrane passage of human papillomavirus L2 protein to trigger retrograde trafficking. Cell 2018;174:1465-76.
2. Klinger SC, Siupka P, Nielsen MS. Retromer-mediated trafficking of transmembrane receptors and transporters. Membranes (Basel) 2015;5:288-306.
3. Johannes L, Popoff V. Tracing the retrograde route in protein trafficking. Cell 2008;135:1175-87.
4. Bonifacino JS, Rojas R. Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 2006;7:568-79.
6. Selyunin AS, Iles LR, Bartholomeusz G, Mukhopadhyay S. Genome-wide siRNA screen identifies UNC50 as a regulator of Shiga toxin 2 trafficking. J Cell Biol 2017;216:3249-62.
7. Matsudaira T, Niki T, Taguchi T, Arai H. Transport of the cholera toxin B-subunit from recycling endosomes to the Golgi requires clathrin and AP-1. J Cell Sci 2015;128:3131-42.
8. Taubenschmid J, Stadlmann J, Jost M, Klokk TI, Rillahan CD, et al. A vital sugar code for ricin toxicity. Cell Res 2017;27:1351-64.
9. Seaman MN. The retromer complex - endosomal protein recycling and beyond. J Cell Sci 2012;125:4693-702.
10. Chia PZ, Gasnereau I, Lieu ZZ, Gleeson PA. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin. J Cell Sci 2011;124:2401-13.
11. Zhang X, Song W. The role of APP and BACE1 trafficking in APP processing and amyloid-beta generation. Alzheimers Res Ther 2013;5:46.
13. McKenzie JE, Raisley B, Zhou X, Naslavsky N, Taguchi T, et al. Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi. Traffic 2012;13:1140-59.
14. Purushothaman LK, Arlt H, Kuhlee A, Raunser S, Ungermann C. Retromer-driven membrane tubulation separates endosomal recycling from Rab7/Ypt7-dependent fusion. Mol Biol Cell 2017;28:783-91.
15. Zaremba S, Keen JH. Assembly polypeptides from coated vesicles mediate reassembly of unique clathrin coats. J Cell Biol 1983;97:1339-47.
17. Lauvrak SU, Torgersen ML, Sandvig K. Efficient endosome-to-Golgi transport of Shiga toxin is dependent on dynamin and clathrin. J Cell Sci 2004;117:2321-31.
18. Scott CC, Vacca F, Gruenberg J. Endosome maturation, transport and functions. Semin Cell Dev Biol 2014;31:2-10.
19. Worby CA, Dixon JE. Sorting out the cellular functions of sorting nexins. Nat Rev Mol Cell Biol 2002;3:919-31.
20. De Camilli P, Emr SD, McPherson PS, Novick P. Phosphoinositides as regulators in membrane traffic. Science 1996;271:1533-9.
21. Kurten RC, Cadena DL, Gill GN. Enhanced degradation of EGF receptors by a sorting nexin, SNX1. Science 1996;272:1008-10.
22. Duclos CM, Champagne A, Carrier JC, Saucier C, Lavoie CL, et al. Caspases play in traffic. Cell Death Dis 2017;8:e2636.
23. Chin LS, Raynor MC, Wei X, Chen HQ, Li L, et al. Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J Biol Chem 2001;276:7069-78.
24. Yang XZ, Li XX, Zhang YJ, Rodriguez-Rodriguez L, Xiang MQ, et al. Rab1 in cell signaling, cancer and other diseases. Oncogene 2016;35:5699-704.
25. Chia WJ, Tang BL. Emerging roles for Rab family GTPases in human cancer. Biochim Biophys Acta 2009;1795:110-6.
26. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009;10:513-25.
27. Cheng KW, Lahad JP, Gray JW, Mills GB. Emerging role of RAB GTPases in cancer and human disease. Cancer Res 2005;65:2516-9.
28. Short B, Preisinger C, Schaletzky J, Kopajtich R, Barr FA. The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membrane. Curr Biol 2002;12:1792-5.
29. Ceresa BP. Regulation of EGFR endocytic trafficking by rab proteins. Histol Histopathol 2006;21:987-93.
30. Zhou Y, Wu B, Li JH, Nan G, Jiang JL, et al. Rab22a enhances CD147 recycling and is required for lung cancer cell migration and invasion. Exp Cell Res 2017;357:9-16.
31. Xiong F, Liu K, Zhang F, Sha K1 Wang X, et al. MiR-204 inhibits the proliferation and invasion of renal cell carcinoma by inhibiting RAB22A expression. Oncol Rep 2016;35:3000-8.
32. Wang T, Gilkes DM, Takano N, Xiang L, Luo W, et al. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci U S A 2014;111:E3234-42.
33. Zhang Y, Zhao FJ, Chen LL, Wang LQ, Nephew KP, et al. MiR-373 targeting of the Rab22a oncogene suppresses tumor invasion and metastasis in ovarian cancer. Oncotarget 2014;5:12291-303.
34. Yang D, Liu G, Wang K. miR-203 acts as a tumor suppressor gene in osteosarcoma by regulating RAB22A. PLoS One 2015;10:e0132225.
35. Mallard F, Tang BL, Galli T, Tenza D, Saint-Pol A, et al. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J Cell Biol 2002;156:653-64.
36. Galvez T, Gilleron J, Zerial M, O’Sullivan GA. SnapShot: mammalian rab proteins in endocytic trafficking. Cell 2012;151:234-e2.
37. White J, Johannes L, Mallard F, Girod A, Grill S, et al. Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J Cell Biol 1999;147:743-60.
38. Personnic N, Bärlocher K, Finsel I, Hilbi H. Subversion of retrograde trafficking by translocated pathogen effectors. Trends Microbiol 2016;24:450-62.
39. Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci U S A 2003;100:10393-8.
40. Scott KL, Kabbarah O, Liang MC, Ivanova E, Anagnostou V, et al. GOLPH3 modulates mTOR signalling and rapamycin sensitivity in cancer. Nature 2009;459:1085-90.
41. Maisel S, Broka D, Schroeder J. Intravesicular epidermal growth factor receptor subject to retrograde trafficking drives epidermal growth factor-dependent migration. Oncotarget 2017;9:6463-77.
42. Greenwood E, Maisel S, Ebertz D, Russ A, Pandey R, et al. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration. Oncotarget 2016;7:60776-92.
43. Merlin J, Stechly L, de Beaucé S, Monté D, Leteurtre E, et al. Galectin-3 regulates MUC1 and EGFR cellular distribution and EGFR downstream pathways in pancreatic cancer cells. Oncogene 2011;30:2514-25.
44. Khan EM, Heidinger JM, Levy M, Lisanti MP, Ravid T, et al. Epidermal growth factor receptor exposed to oxidative stress undergoes Src- and caveolin-1-dependent perinuclear trafficking. J Biol Chem 2006;281:14486-93.
45. Chung BM, Raja SM, Clubb RJ, Tu C, George M, et al. Aberrant trafficking of NSCLC-associated EGFR mutants through the endocytic recycling pathway promotes interaction with Src. BMC Cell Biol 2009;10:84.
46. Maher PA. Nuclear translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J Cell Biol 1996;134:529-36.
47. Mitchell H, Choudhury A, Pagano RE, Leof EB. Ligand-dependent and -independent transforming growth factor-beta receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Mol Biol Cell 2004;15:4166-78.
48. Shewan AM, van Dam EM, Martin S, Luen TB, Hong W, et al. GLUT4 recycles via a trans-Golgi network (TGN) subdomain enriched in syntaxins 6 and 16 but not TGN38: involvement of an acidic targeting motif. Mol Biol Cell 2003;14:973-86.
49. Ralston E, Ploug T. GLUT4 in cultured skeletal myotubes is segregated from the transferrin receptor and stored in vesicles associated with TGN. J Cell Sci 1996;109:2967-78.
50. Kanzaki M. Insulin receptor signals regulating GLUT4 translocation and actin dynamics. Endocr J 2006;53:267-93.
51. Zhang H, Fagan DH, Zeng X, Freeman KT, Sachdev D, et al. Inhibition of cancer cell proliferation and metastasis by insulin receptor downregulation. Oncogene 2010;29:2517-27.
52. Dearth RK, Cui X, Kim HJ, Kuiatse I, Lawrence NA, et al. Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2. Mol Cell Biol 2006;26:9302-14.
53. Bryant DM, Wylie FG, Stow JL. Regulation of endocytosis, nuclear translocation, and signaling of fibroblast growth factor receptor 1 by E-cadherin. Mol Biol Cell 2005;16:14-23.
54. Carpenter G. Nuclear localization and possible functions of receptor tyrosine kinases. Curr Opin Cell Biol 2003;15:143-8.
55. Reilly JF, Maher PA. Importin beta-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J Cell Biol 2001;152:1307-12.
56. Bitler BG, Goverdhan A, Schroeder JA. MUC1 regulates nuclear localization and function of the epidermal growth factor receptor. J Cell Sci 2010;123:1716-23.
57. Ye T, Wei X, Yin T, Xia Y, Li D, et al. Inhibition of FGFR signaling by PD173074 improves antitumor immunity and impairs breast cancer metastasis. Breast Cancer Res Treat 2014;143:435-46.
58. Coleman SJ, Chioni AM, Ghallab M, Anderson RK, Lemoine NR, et al. Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Mol Med 2014;6:467-81.
59. Yarden Y, Sliwkowski MX. Untangling the ErbB signaling network. Nat Rev Mol Cell Biol 2001;2:127-37.
60. Hopkins CR, Miller K, Beardmore JM. Receptor-mediated endocytosis of transferrin and epidermal growth factor receptors: a comparison of constitutive and ligand-induced uptake. J Cell Sci Supp 1985;3:173-86.
61. Sorkin A, Goh LK. Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 2008;314:3093-106.
62. Roepstorff K, Grandal MV, Henriksen L, Knudsen SL, Lerdrup M, et al. Differential effects of EGFR ligands on endocytic sorting of the receptor. Traffic 2009;10:1115-27.
63. Willmarth NE, Baillo A, Dziubinski ML, Wilson K, Riese DJ 2nd, et al. Altered EGFR localization and degradation in human breast cancer cells with an amphiregulin/EGFR autocrine loop. Cell Signal 2009;21:212-9.
64. Haigler HT, McKanna JA, Cohen S. Rapid stimulation of pinocytosis in human carcinoma cells A-431 by epidermal growth factor. J Cell Biol 1979;83:82-90.
65. Hanawa M, Suzuki S, Dobashi Y, Yamane T, Kono K, et al. EGFR protein overexpression and gene amplification in squamous cell carcinomas of the esophagus. Int J Cancer 2006;118:1173-80.
66. Vieira AV, Lamaze C, Schmid SL. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 1996;274:2086-9.
67. Garay C, Judge G, Lucarelli S, Bautista S, Pandey R, et al. Epidermal growth factor-stimulated Akt phosphorylation requires clathrin or ErbB2 but not receptor endocytosis. Mol Biol Cell 2015;26:3504-19.
68. Wang Y, Pennock S, Chen X, Wang Z. Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol 2002;22:7279-90.
69. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, et al. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 2003;284:31-53.
70. Sebastian S, Settleman J, Reshkin SJ, Azzariti A, Bellizzi A, et al. The complexity of targeting EGFR signalling in cancer: from expression to turnover. Biochim Biophys Acta 2006;1766:120-39.
71. Wiley HS. Trafficking of the ErbB receptors and its influence on signaling. Exp Cell Res 2003;284:78-88.
72. Nishimura Y, Takiguchi S, Ito S, Itoh K. EGF-stimulated AKT activation is mediated by EGFR recycling via an early endocytic pathway in a gefitinibresistant human lung cancer cell line. Int J Oncol 2015;46:1721-9.
73. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 2011;147:759-72.
74. Gan Y, Shi C, Inge L, Hibner M, Balducci J, et al. Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells. Oncogene 2010;29:4947-58.
75. Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 1995;64:280-5.
76. Sun M, Wang G, Paciga JE, Feldman RI, Yuan ZQ, et al. AKT1/PKBα kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am J Pathol 2001;159:431-7.
77. Ringel MD, Hayre N, Saito J, Saunier B, Schuppert F, et al. Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res 2001;61:6105-11.
78. Sheng Q, Liu J. The therapeutic potential of targeting the EGFR family in epithelial ovarian cancer. Br J Cancer 2011;104:1241-5.
79. Meng Q, Xia C, Fang J, Rojanasakul Y, Jiang BH. Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway. Cell Signal 2006;18:2262-71.
80. Sainsbury JR, Farndon JR, Needham GK, Malcolm AJ, Harris AL. Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet 1987;1:1398-402.
81. Schiff BA, McMurphy AB, Jasser SA, Younes MN, Doan D, et al. Epidermal growth factor receptor (EGFR) is overexpressed in anaplastic thyroid cancer, and the EGFR inhibitor gefitinib inhibits the growth of anaplastic thyroid cancer. Clin Cancer Res 2004;10:8594-602.
82. Hyatt DC, Ceresa BP. Cellular localization of the activated EGFR determines its effect on cell growth in MDA-MB-468 cells. Exp Cell Res 2008;314:3415-25.
83. Wang YN, Lee HH, Lee HJ, Du Y, Yamaguchi H, et al. Membrane-bound trafficking regulates nuclear transport of integral epidermal growth factor receptor (EGFR) and ErbB-2. J Biol Chem 2012;287:16869-79.
84. Wang YN, Wang H, Yamaguchi H, Lee HJ, Lee HH, et al. COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport. Biochem Biophys Res Commun 2010;399:498-504.
85. Du Y, Shen J, Hsu JL, Han Z, Hsu MC, et al. Syntaxin 6-mediated Golgi translocation plays an important role in nuclear functions of EGFR through microtubule-dependent trafficking. Oncogene 2014;33:756-70.
86. Liao HJ, Carpenter G. Role of the Sec61 translocon in EGF receptor trafficking to the nucleus and gene expression. Mol Biol Cell 2007;18:1064-72.
87. Lo HW, Ali-Seyed M, Wu Y, Bartholomeusz G, Hsu SC, et al. Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1. J Cell Biochem 2006;98:1570-83.
88. Hanada N, Lo HW, Day CP, Pan Y, Nakajima Y, et al. Co-regulation of B-Myb expression by E2F1 and EGF receptor. Mol Carcinog 2006;45:10-7.
89. Lo HW, Hsu SC, Ali-Seyed M, Gunduz M, Xia W, et al. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 2005;7:575-89.
90. Lo HW, Xia W, Wei Y, Ali-Seyed M, Huang SF, et al. Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res 2005;65:338-48.
91. Ortega J, Li JY, Lee S, Tong D, Gu L, et al. Phosphorylation of PCNA by EGFR inhibits mismatch repair and promotes misincorporation during DNA synthesis. Proc Natl Acad Sci U S A 2015;112:5667-72.
92. Saloura V, Vougiouklakis T, Zewde M, Deng X, Kiyotani K, et al. WHSC1L1-mediated EGFR mono-methylation enhances the cytoplasmic and nuclear oncogenic activity of EGFR in head and neck cancer. Sci Rep 2017;7:40664.
93. Hadzisejdić I, Mustać E, Jonjić N, Petković M, Grahovac B. Nuclear EGFR in ductal invasive breast cancer: correlation with cyclin-D1 and prognosis. Mod Pathol 2010;23:392-403.
94. Hoshino M, Fukui H, Ono Y, Sekikawa A, Ichikawa K, et al. Nuclear expression of phosphorylated EGFR is associated with poor prognosis of patients with esophageal squamous cell carcinoma. Pathobiology 2007;74:15-21.
95. Lin SY, Makino K, Xia W, Matin A, Wen Y, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 2001;3:802-8.
96. Pochampalli MR, Bitler BG, Schroeder JA. Transforming growth factor alpha dependent cancer progression is modulated by Muc1. Cancer Res 2007;67:6591-8.
97. Aggarwal P, Lessie MD, Lin DI, Pontano L, Gladden AB, et al. Nuclear accumulation of cyclin D1 during S phase inhibits Cul4-dependent Cdt1 proteolysis and triggers p53-dependent DNA rereplication. Genes Dev 2007;21:2908-22.
98. Bertelsen V, Stang E. The mysterious ways of ErbB2/HER2 trafficking. Membranes (Basel) 2014;4:424-46.
99. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006;366:2-16.
100. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987;235:177-82.
101. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989;244:707-12.
102. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol 2010;28:3271-7.
103. Wang SC, Lien HC, Xia W, Chen IF, Lo HW, et al. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell 2004;6:251-61.
104. Edwards J, Mukherjee R, Munro AF, Wells AC, Almushatat A, et al. HER2 and COX2 expression in human prostate cancer. Eur J Cancer 2004;40:50-5.
105. Thorat D, Sahu A, Behera R, Lohite K, Deshmukh S, et al. Association of osteopontin and cyclooxygenase-2 expression with breast cancer subtypes and their use as potential biomarkers. Oncol Lett 2013;6:1559-64.
106. Glynn SA, Prueitt RL, Ridnour LA, Boersma BJ, Dorsey TM, et al. COX-2 activation is associated with Akt phosphorylation and poor survival in ER-negative, HER2-positive breast cancer. BMC Cancer 2010;10:626.
107. Waterman H, Alroy I, Strano S, Seger R, Yarden Y. The C-terminus of the kinase-defective neuregulin receptor ErbB-3 confers mitogenic superiority and dictates endocytic routing. EMBO J 1999;18:3348-58.
108. Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF 3rd, et al. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A 2003;100:8933-8.
109. Alimandi M, Romano A, Curia MC, Muraro R, Fedi P, et al. Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene 1995;10:1813-21.
110. Wallasch C, Weiss FU, Niederfellner G, Jallal B, Issing W, et al. Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J 1995;14:4267-75.
111. Kobayashi M, Iwamatsu A, Shinohara-Kanda A, Ihara S, Fukui Y. Activation of ErbB3-PI3-kinase pathway is correlated with malignant phenotypes of adenocarcinomas. Oncogene 2003;22:1294-301.
112. Roepstorff K, Grøvdal L, Grandal M, Lerdrup M, van Deurs B. Endocytic downregulation of ErbB receptors: mechanisms and relevance in cancer. Histochem Cell Biol 2008;129:563-78.
113. Frazier NM, Brand T, Gordan JD, Grandis J, Jura N. Overexpression-mediated activation of MET in the Golgi promotes HER3/ERBB3 phosphorylation. Oncogene 2018; doi: 10.1038/s41388-018-0537-0.
114. Andrique L, Fauvin D, El Maassarani M, Colasson H, Vannier B, et al. ErbB3(80 kDa), a nuclear variant of the ErbB3 receptor, binds to the cyclin D1 promoter to activate cell proliferation but is negatively controlled by p14ARF. Cell Signal 2012;24:1074-85.
115. Koumakpayi IH, Diallo JS, Le Page C, Lessard L, Gleave M, et al. Expression and nuclear localization of ErbB3 in prostate cancer. Clin Cancer Res 2006;12:2730-7.
116. Cheng CJ, Ye XC, Vakar-Lopez F, Kim J, Tu SM, et al. Bone microenvironment and androgen status modulate subcellular localization of ErbB3 in prostate cancer cells. Mol Cancer Res 2007;5:675-84.
117. Yarden Y, Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 2012;12:553-63.
118. Schlessinger J, Lemmon MA. Nuclear signaling by receptor tyrosine kinases: the first robin of spring. Cell 2006;127:45-8.
119. Mendoza-Naranjo A, El-Naggar A, Wai DH, Mistry P, Lazic N, et al. ERBB4 confers metastatic capacity in Ewing sarcoma. EMBO Mol Med 2013;5:1087-102.
120. Ljuslinder I, Malmer B, Isaksson-Mettävainio M, Oberg A, Henriksson R, et al. ErbB 1-4 expression alterations in primary colorectal cancers and their corresponding metastases. Anticancer Res 2009;29:1489-94.
121. Junttila TT, Sundvall M, Lundin M, Lundin J, Tanner M, et al. Cleavable ErbB4 isoform in estrogen receptor-regulated growth of breast cancer cells. Cancer Res 2005;65:1384-93.
122. Subtil A, Hémar A, Dautry-Varsat A. Rapid endocytosis of interleukin 2 receptors when clathrin-coated pit endocytosis is inhibited. J Cell Sci 1994;107:3461-8.
123. Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 1983;97:329-39.
124. Lamaze C, Dujeancourt A, Baba T, Lo CG, Benmerah A, et al. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell 2001;7:661-71.
125. Orlandi PA, Fishman PH. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 1998;141:905-15.
126. Barton DP, Blanchard DK, Wells AF, Nicosia SV, Roberts WS, et al. Expression of interleukin-2 receptor alpha (IL-2R alpha) mRNA and protein in advanced epithelial ovarian cancer. Anticancer Res 1994;14:761-72.
127. Tefferi A, Vaidya R, Caramazza D, Finke C, Lasho T, et al. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol 2011;29:1356-63.
128. Zwaagstra JC, Guimond A, O’Connor-McCourt MD. Predominant intracellular localization of the type I transforming growth factor-beta receptor and increased nuclear accumulation after growth arrest. Exp Cell Res 2000;258:121-34.
129. Forrester E, Chytil A, Bierie B, Aakre M, Gorska AE, et al. Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res 2005;65:2296-302.
130. Heldin CH, Landström M, Moustakas A. Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol 2009;21:166-76.
131. Hayes S, Chawla A, Corvera S. TGF beta receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J Cell Biol 2002;158:1239-49.
132. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL. Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 2003;5:410-21.
133. Stechmann B, Bai SK, Gobbo E, Lopez R, Merer G, et al. Inhibition of retrograde transport protects mice from lethal ricin challenge. Cell 2010;141:231-42.
134. Luginbuehl V, Meier N, Kovar K, Rohrer J. Intracellular drug delivery: potential usefulness of engineered Shiga toxin subunit B for targeted cancer therapy. Biotechnol Adv 2018;36:613-23.
135. Lo HW, Hung MC. Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer 2006;94:184-8.
136. Giri DK, Ali-Seyed M, Li LY, Lee DF, Ling P, et al. Endosomal transport of ErbB-2: mechanism for nuclear entry of the cell surface receptor. Mol Cell Biol 2005;25:11005-18.
137. Dittmann K, Mayer C, Rodemann HP. Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity. Radiother Oncol 2005;76:157-61.
138. Pilarczyk G, Nesnidal I, Gunkel M, Bach M, Bestvater F, et al. Localisation microscopy of breast epithelial ErbB-2 receptors and gap junctions: trafficking after gamma-irradiation, neuregulin-1beta, and trastuzumab application. Int J Mol Sci 2017; doi: 10.3390/ijms18020362.
139. Hintersteiner M, Ambrus G, Bednenko J, Schmied M, Knox AJ, et al. Identification of a small molecule inhibitor of importin beta mediated nuclear import by confocal on-bead screening of tagged one-bead one-compound libraries. ACS Chem Biol 2010;5:967-79.