1. Kozovska Z, Gabrisova V, Kucerova L. Colon cancer: cancer stem cells markers, drug resistance and treatment. Biomed Pharmacother 2014;68:911-6.

2. Shimokawa M, Ohta Y, Nishikori S, Matano M, Takano A, et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature 2017;545:187-92.

3. Cortina C, Turon G, Stork D, Hernando-Momblona X, Sevillano M, et al. A genome editing approach to study cancer stem cells in human tumors. EMBO Mol Med 2017;9:869-79.

4. de Sousa e Melo F, Kurtova AV, Harnoss JM, Kljavin N, Hoeck JD, et al. A distinct role for Lgr5(+) stem cells in primary and metastatic colon cancer. Nature 2017;543:676-80.

5. Todaro M, Francipane MG, Medema JP, Stassi G. Colon cancer stem cells: promise of targeted therapy. Gastroenterology 2010;138:2151-62.

6. Rahman M, Deleyrolle L, Vedam-Mai V, Azari H, Abd-El-Barr M, et al. The cancer stem cell hypothesis: failures and pitfalls. Neurosurgery 2011;68:531-45.

7. Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med 2006;355:1253-61.

8. Jones RJ, Matsui W. Cancer stem cells: from bench to bedside. Biol Blood Marrow Transplant 2007;13:47-52.

9. Kim WT, Ryu CJ. Cancer stem cell surface markers on normal stem cells. BMB Rep 2017;50:285-98.

10. Cherciu I, Barbalan A, Pirici D, Margaritescu C, Saftoiu A. Stem cells, colorectal cancer and cancer stem cell markers correlations. Curr Health Sci J 2014;40:153-61.

11. Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci U S A 2008;105:13427-32.

12. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105-11.

13. Dirks PB. Cancer: stem cells and brain tumours. Nature 2006;444:687-8.

14. Richard V, Nair MG, Santhosh Kumar TR, Pillai MR. Side population cells as prototype of chemoresistant, tumor-initiating cells. Biomed Res Int 2013;2013:517237.

15. Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 2016;7:11018-32.

16. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science 2007;317:337.

17. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009;119:1420-8.

18. Pantel K, Alix-Panabieres C. Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med 2010;16:398-406.

19. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature 2013;501:328-37.

20. Poli V, Fagnocchi L, Zippo A. Tumorigenic cell reprogramming and cancer plasticity: interplay between signaling, microenvironment, and epigenetics. Stem Cells Int 2018;2018:4598195.

21. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med 2017;23:1124-34.

22. Policastro LL, Ibanez IL, Notcovich C, Duran HA, Podhajcer OL. The tumor microenvironment: characterization, redox considerations, and novel approaches for reactive oxygen species-targeted gene therapy. Antioxid Redox Signal 2013;19:854-95.

23. Ralph SJ, Nozuhur S, Moreno-Sánchez R, Rodríguez-Enríquez S, Pritchard R. NSAID celecoxib: a potent mitochondrial pro-oxidant cytotoxic agent sensitizing metastatic cancers and cancer stem cells to chemotherapy. J Cancer Metastasis Treat 2018;4:49.

24. Shao Y, Chen T, Zheng X, Yang S, Xu K, et al. Colorectal cancer-derived small extracellular vesicles establish an inflammatory premetastatic niche in liver metastasis. Carcinogenesis 2018;39:1368-79.

25. Blassl C, Kuhlmann JD, Webers A, Wimberger P, Fehm T, et al. Gene expression profiling of single circulating tumor cells in ovarian cancer - establishment of a multi-marker gene panel. Mol Oncol 2016;10:1030-42.

26. Francart ME, Lambert J, Vanwynsberghe AM, Thompson EW, Bourcy M, et al. Epithelial-mesenchymal plasticity and circulating tumor cells: travel companions to metastases. Dev Dyn 2018;247:432-50.

27. Alix-Panabieres C, Mader S, Pantel K. Epithelial-mesenchymal plasticity in circulating tumor cells. J Mol Med (Berl) 2017;95:133-42.

28. Grillet F, Bayet E, Villeronce O, Zappia L, Lagerqvist EL, et al. Circulating tumour cells from patients with colorectal cancer have cancer stem cell hallmarks in ex vivo culture. Gut 2017;66:1802-10.

29. Zhu P, Fan Z. Cancer stem cells and tumorigenesis. Biophys Rep 2018;4:178-88.

30. Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol 2017;51:1357-69.

31. Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev 2018;62:50-60.

32. Sawa M, Masuda M, Yamada T. Targeting the Wnt signaling pathway in colorectal cancer. Expert Opin Ther Targets 2016;20:419-29.

33. Masuda M, Uno Y, Ohbayashi N, Ohata H, Mimata A, et al. TNIK inhibition abrogates colorectal cancer stemness. Nat Commun 2016;7:12586.

34. Begicevic RR, Falasca M. ABC Transporters in cancer stem cells: beyond chemoresistance. Int J Mol Sci 2017;18:2362.

35. Zhang G, Wang Z, Luo W, Jiao H, Wu J, et al. Expression of potential cancer stem cell marker ABCG2 is Associated with malignant behaviors of hepatocellular carcinoma. Gastroenterol Res Pract 2013;2013:782581.

36. Liu HG, Pan YF, You J, Wang OC, Huang KT, et al. Expression of ABCG2 and its significance in colorectal cancer. Asian Pac J Cancer Prev 2010;11:845-8.

37. Wang X, Xia B, Liang Y, Peng L, Wang Z, et al. Membranous ABCG2 expression in colorectal cancer independently correlates with shortened patient survival. Cancer Biomark 2013;13:81-8.

38. Ma S, Chan KW, Hu L, Lee TK, Wo JY, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007;132:2542-56.

39. Zhao W, Ji X, Zhang F, Li L, Ma L. Embryonic stem cell markers. Molecules 2012;17:6196-236.

40. Hang D, Dong HC, Ning T, Dong B, Hou DL, et al. Prognostic value of the stem cell markers CD133 and ABCG2 expression in esophageal squamous cell carcinoma. Dis Esophagus 2012;25:638-44.

41. Barron GA, Moseley H, Woods JA. Differential sensitivity in cell lines to photodynamic therapy in combination with ABCG2 inhibition. J Photochem Photobiol B 2013;126:87-96.

42. Dvorak P, Pesta M, Soucek P. ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer. Tumour Biol 2017;39:1010428317699800.

43. Sukowati CH, Rosso N, Pascut D, Anfuso B, Torre G, et al. Gene and functional up-regulation of the BCRP/ABCG2 transporter in hepatocellular carcinoma. BMC Gastroenterol 2012;12:160.

44. Porro A, Haber M, Diolaiti D, Iraci N, Henderson M, et al. Direct and coordinate regulation of ATP-binding cassette transporter genes by Myc factors generates specific transcription signatures that significantly affect the chemoresistance phenotype of cancer cells. J Biol Chem 2010;285:19532-43.

45. Chikazawa N, Tanaka H, Tasaka T, Nakamura M, Tanaka M, et al. Inhibition of Wnt signaling pathway decreases chemotherapy-resistant side-population colon cancer cells. Anticancer Res 2010;30:2041-8.

46. Chang YW, Su YJ, Hsiao M, Wei KC, Lin WH, et al. Diverse targets of beta-catenin during the epithelial-mesenchymal transition define cancer stem cells and predict disease relapse. Cancer Res 2015;75:3398-410.

47. Ding XW, Wu JH, Jiang CP. ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci 2010;86:631-7.

48. Alowaidi F, Hashimi SM, Alqurashi N, Alhulais R, Ivanovski S, et al. Assessing stemness and proliferation properties of the newly established colon cancer ‘stem’ cell line, CSC480 and novel approaches to identify dormant cancer cells. Oncol Rep 2018;39:2881-91.

49. Weigmann A, Corbeil D, Hellwig A, Huttner WB. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci U S A 1997;94:12425-30.

50. Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med 2018;7:18.

51. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63:5821-8.

52. Vaiopoulos AG, Kostakis ID, Koutsilieris M, Papavassiliou AG. Colorectal cancer stem cells. Stem Cells 2012;30:363-71.

53. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445:106-10.

54. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2008;15:504-14.

55. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005;65:10946-51.

56. Chen H, Luo Z, Dong L, Tan Y, Yang J, et al. CD133/prominin-1-mediated autophagy and glucose uptake beneficial for hepatoma cell survival. PLoS One 2013;8:e56878.

57. Lin SH, Liu T, Ming X, Tang Z, Fu L, et al. Regulatory role of hexosamine biosynthetic pathway on hepatic cancer stem cell marker CD133 under low glucose conditions. Sci Rep 2016;6:21184.

58. Du L, Wang H, He L, Zhang J, Ni B, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 2008;14:6751-60.

59. Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest 2008;118:2111-20.

60. Misra S, Hascall VC, Berger FG, Markwald RR, Ghatak S. Hyaluronan, CD44, and cyclooxygenase-2 in colon cancer. Connect Tissue Res 2008;49:219-24.

61. Ghatak S, Misra S, Toole BP. Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells. J Biol Chem 2005;280:8875-83.

62. Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol 2015;6:201.

63. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 2006;8:R59.

64. Omara-Opyene AL, Qiu J, Shah GV, Iczkowski KA. Prostate cancer invasion is influenced more by expression of a CD44 isoform including variant 9 than by Muc18. Lab Invest 2004;84:894-907.

65. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, et al. Identification of pancreatic cancer stem cells. Cancer Res 2007;67:1030-7.

66. Cortes-Dericks L, Froment L, Boesch R, Schmid RA, Karoubi G. Cisplatin-resistant cells in malignant pleural mesothelioma cell lines show ALDH(high)CD44(+) phenotype and sphere-forming capacity. BMC Cancer 2014;14:304.

67. Ohno Y, Shingyoku S, Miyake S, Tanaka A, Fudesaka S, et al. Differential regulation of the sphere formation and maintenance of cancer-initiating cells of malignant mesothelioma via CD44 and ALK4 signaling pathways. Oncogene 2018;37:6357-67.

68. Paradis V, Eschwege P, Loric S, Dumas F, Ba N, et al. De novo expression of CD44 in prostate carcinoma is correlated with systemic dissemination of prostate cancer. J Clin Pathol 1998;51:798-802.

69. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100:3983-8.

70. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003;17:1253-70.

71. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006;25:1696-708.

72. Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL. CD44+ CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 2008;98:756-65.

73. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 2007;104:10158-63.

74. Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 2014;14:342-56.

75. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 2007;104:973-8.

76. Schreiber CL, Smith BD. Molecular imaging of aminopeptidase N in cancer and angiogenesis. Contrast Media Mol Imaging 2018;2018:5315172.

77. Castelli G, Pelosi E, Testa U. Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Cancers (Basel) 2017;9. pii: E127

78. Nakayama M, Ogasawara S, Akiba J, Ueda K, Koura K, et al. Side population cell fractions from hepatocellular carcinoma cell lines increased with tumor dedifferentiation, but lack characteristic features of cancer stem cells. J Gastroenterol Hepatol 2014;29:1092-101.

79. Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, et al. CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest 2010;120:3326-39.

80. Yamashita M, Wada H, Eguchi H, Ogawa H, Yamada D, et al. A CD13 inhibitor, ubenimex, synergistically enhances the effects of anticancer drugs in hepatocellular carcinoma. Int J Oncol 2016;49:89-98.

81. Yamanaka C, Wada H, Eguchi H, Hatano H, Gotoh K, et al. Clinical significance of CD13 and epithelial mesenchymal transition (EMT) markers in hepatocellular carcinoma. Jpn J Clin Oncol 2018;48:52-60.

82. Zheng YB, Gong JH, Liu XJ, Li Y, Zhen YS. A CD13-targeting peptide integrated protein inhibits human liver cancer growth by killing cancer stem cells and suppressing angiogenesis. Mol Carcinog 2017;56:1395-404.

83. Hashida H, Takabayashi A, Kanai M, Adachi M, Kondo K, et al. Aminopeptidase N is involved in cell motility and angiogenesis: its clinical significance in human colon cancer. Gastroenterology 2002;122:376-86.

84. Al-Kharusi MR, Smartt HJ, Greenhough A, Collard TJ, Emery ED, et al. LGR5 promotes survival in human colorectal adenoma cells and is upregulated by PGE2: implications for targeting adenoma stem cells with NSAIDs. Carcinogenesis 2013;34:1150-7.

85. Lebensohn AM, Rohatgi R. R-spondins can potentiate WNT signaling without LGR. Elife 2018;7:e33126.

86. Park S, Cui J, Yu W, Wu L, Carmon KS, et al. Differential activities and mechanisms of the four R-spondins in potentiating Wnt/beta-catenin signaling. J Biol Chem 2018;293:9759-69.

87. Zhou X, Geng L, Wang D, Yi H, Talmon G, et al. R-Spondin1/LGR5 Activates TGFbeta signaling and suppresses colon cancer metastasis. Cancer Res 2017;77:6589-602.

88. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007;449:1003-7.

89. Garcia MI, Ghiani M, Lefort A, Libert F, Strollo S, et al. LGR5 deficiency deregulates Wnt signaling and leads to precocious Paneth cell differentiation in the fetal intestine. Dev Biol 2009;331:58-67.

90. Leung C, Tan SH, Barker N. Recent advances in Lgr5(+) stem cell research. Trends Cell Biol 2018;28:380-91.

91. Wu C, Xie Y, Gao F, Wang Y, Guo Y, et al. Lgr5 expression as stem cell marker in human gastric gland and its relatedness with other putative cancer stem cell markers. Gene 2013;525:18-25.

92. Buczacki SJ, Zecchini HI, Nicholson AM, Russell R, Vermeulen L, et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 2013;495:65-9.

93. Barker N, van Es JH, Jaks V, Kasper M, Snippert H, et al. Very long-term self-renewal of small intestine, colon, and hair follicles from cycling Lgr5+ve stem cells. Cold Spring Harb Symp Quant Biol 2008;73:351-6.

94. Haegebarth A, Clevers H. Wnt signaling, lgr5, and stem cells in the intestine and skin. Am J Pathol 2009;174:715-21.

95. Song SJ, Mao XG, Wang C, Han AG, Yan M, et al. LGR5/GPR49 is implicated in motor neuron specification in nervous system. Neurosci Lett 2015;584:135-40.

96. Qi C, Zhang J, Chen X, Wan J, Wang J, et al. Hypoxia stimulates neural stem cell proliferation by increasing HIF1alpha expression and activating Wnt/beta-catenin signaling. Cell Mol Biol (Noisy-le-grand) 2017;63:12-9.

97. Nakata S, Campos B, Bageritz J, Bermejo JL, Becker N, et al. LGR5 is a marker of poor prognosis in glioblastoma and is required for survival of brain cancer stem-like cells. Brain Pathol 2013;23:60-72.

98. Jang BG, Kim HS, Chang WY, Bae JM, Kim WH, et al. Expression profile of LGR5 and Its prognostic significance in colorectal cancer progression. Am J Pathol 2018;188:2236-50.

99. Walker F, Zhang HH, Odorizzi A, Burgess AW. LGR5 is a negative regulator of tumourigenicity, antagonizes Wnt signalling and regulates cell adhesion in colorectal cancer cell lines. PLoS One 2011;6:e22733.

100. Morgan RG, Mortensson E, Williams AC. Targeting LGR5 in colorectal cancer: therapeutic gold or too plastic? Br J Cancer 2018;118:1410-8.

101. Leng Z, Xia Q, Chen J, Li Y, Xu J, et al. Lgr5+CD44+EpCAM+ strictly defines cancer stem cells in human colorectal cancer. Cell Physiol Biochem 2018;46:860-72.

102. Medema JP. Targeting the colorectal cancer stem cell. N Engl J Med 2017;377:888-90.

103. Litvinov SV, Velders MP, Bakker HAM, Fleuren GJ, Warnaar SO. Ep-Cam: a human epithelial antigen is a homophilic cell-cell adhesion molecule. J Cell Biol 1994;125:437-46.

104. Anderson R, Schaible K, Heasman J, Wylie C. Expression of the homophilic adhesion molecule, Ep-CAM, in the mammalian germ line. J Reprod Fertil 1999;116:379-84.

105. van der Gun BT, Melchers LJ, Ruiters MH, de Leij LF, McLaughlin PM, et al. EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis 2010;31:1913-21.

106. Boesch M, Spizzo G, Seeber A. Concise Review: Aggressive colorectal cancer: role of epithelial cell adhesion molecule in cancer stem cells and epithelial-to-mesenchymal transition. Stem Cells Transl Med 2018;7:495-501.

107. Huang L, Yang Y, Yang F, Liu S, Zhu Z, et al. Functions of EpCAM in physiological processes and diseases (Review). Int J Mol Med 2018;42:1771-85.

108. Kempers MJ, Kuiper RP, Ockeloen CW, Chappuis PO, Hutter P, et al. Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome: a cohort study. Lancet Oncol 2011;12:49-55.

109. Basak S, Speicher D, Eck S, Wunner W, Maul G, et al. Colorectal carcinoma invasion inhibition by CO17-1A/GA733 antigen and its murine homologue. J Natl Cancer Inst 1998;90:691-7.

110. Winter MJ, Nagelkerken B, Mertens AE, Rees-Bakker HA, Briaire-de Bruijn IH, et al. Expression of Ep-CAM shifts the state of cadherin-mediated adhesions from strong to weak. Exp Cell Res 2003;285:50-8.

111. Maetzel D, Denzel S, Mack B, Canis M, Went P, et al. Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol 2009;11:162-71.

112. Schmidt M, Ruttinger D, Sebastian M, Hanusch CA, Marschner N, et al. Phase IB study of the EpCAM antibody adecatumumab combined with docetaxel in patients with EpCAM-positive relapsed or refractory advanced-stage breast cancer. Ann Oncol 2012;23:2306-13.

113. Gastl G, Spizzo G, Obrist P, Dunser M, Mikuz G. Ep-CAM overexpression in breast cancer as a predictor of survival. Lancet 2000;356:1981-2.

114. Spizzo G, Went P, Dirnhofer S, Obrist P, Simon R, et al. High Ep-CAM expression is associated with poor prognosis in node-positive breast cancer. Breast Cancer Res Treat 2004;86:207-13.

115. Bokemeyer C. Catumaxomab--trifunctional anti-EpCAM antibody used to treat malignant ascites. Expert Opin Biol Ther 2010;10:1259-69.

116. Baeuerle PA, Gires O. EpCAM (CD326) finding its role in cancer. Br J Cancer 2007;96:417-23.

117. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, et al. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 2009;11:R46.

118. Balzar M, Winter MJ, de Boer CJ, Litvinov SV. The biology of the 17-1A antigen (Ep-CAM). J Mol Med (Berl) 1999;77:699-712.

119. Trzpis M, McLaughlin PM, van Goor H, Brinker MG, van Dam GM, et al. Expression of EpCAM is up-regulated during regeneration of renal epithelia. J Pathol 2008;216:201-8.

120. Imai T, Tamai K, Oizumi S, Oyama K, Yamaguchi K, et al. CD271 defines a stem cell-like population in hypopharyngeal cancer. PLoS One 2013;8:e62002.

121. Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 2010;466:133-7.

122. Tomellini E, Lagadec C, Polakowska R, Le Bourhis X. Role of p75 neurotrophin receptor in stem cell biology: more than just a marker. Cell Mol Life Sci 2014;71:2467-81.

123. Watson JT, Foo T, Wu J, Moed BR, Thorpe M, et al. CD271 as a marker for mesenchymal stem cells in bone marrow versus umbilical cord blood. Cells Tissues Organs 2013;197:496-504.

124. Alvarez-Viejo M, Menendez-Menendez Y, Otero-Hernandez J. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture. World J Stem Cells 2015;7:470-6.

125. Redmer T, Welte Y, Behrens D, Fichtner I, Przybilla D, et al. The nerve growth factor receptor CD271 is crucial to maintain tumorigenicity and stem-like properties of melanoma cells. PLoS One 2014;9:e92596.

126. Li S, Yue D, Chen X, Wang L, Li J, et al. Epigenetic regulation of CD271, a potential cancer stem cell marker associated with chemoresistance and metastatic capacity. Oncol Rep 2015;33:425-32.

127. Huang SD, Yuan Y, Liu XH, Gong DJ, Bai CG, et al. Self-renewal and chemotherapy resistance of p75NTR positive cells in esophageal squamous cell carcinomas. BMC Cancer 2009;9:9.

128. Kojima H, Okumura T, Yamaguchi T, Miwa T, Shimada Y, et al. Enhanced cancer stem cell properties of a mitotically quiescent subpopulation of p75NTR-positive cells in esophageal squamous cell carcinoma. Int J Oncol 2017;51:49-62.

129. Okumura T, Yamaguchi T, Watanabe T, Nagata T, Shimada Y. Flow cytometric detection of circulating tumor cells using a candidate stem cell marker, p75 neurotrophin receptor (p75NTR). Methods Mol Biol 2017;1634:211-7.

130. Chung MK, Jung YH, Lee JK, Cho SY, Murillo-Sauca O, et al. CD271 Confers an invasive and metastatic phenotype of head and neck squamous cell carcinoma through the upregulation of slug. Clin Cancer Res 2018;24:674-83.

131. Furuta J, Inozume T, Harada K, Shimada S. CD271 on melanoma cell is an IFN-gamma-inducible immunosuppressive factor that mediates downregulation of melanoma antigens. J Invest Dermatol 2014;134:1369-77.

132. Redmer T, Walz I, Klinger B, Khouja S, Welte Y, et al. The role of the cancer stem cell marker CD271 in DNA damage response and drug resistance of melanoma cells. Oncogenesis 2017;6:e291.

133. Radke J, Rossner F, Redmer T. CD271 determines migratory properties of melanoma cells. Sci Rep 2017;7:9834.

134. Civenni G, Walter A, Kobert N, Mihic-Probst D, Zipser M, et al. Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res 2011;71:3098-109.

135. Guo R, Fierro-Fine A, Goddard L, Russell M, Chen J, et al. Increased expression of melanoma stem cell marker CD271 in metastatic melanoma to the brain. Int J Clin Exp Pathol 2014;7:8947-51.

136. Redmer T. Deciphering mechanisms of brain metastasis in melanoma - the gist of the matter. Mol Cancer 2018;17:106.

137. Csermely P, Hodsagi J, Korcsmaros T, Modos D, Perez-Lopez AR, et al. Cancer stem cells display extremely large evolvability: alternating plastic and rigid networks as a potential mechanism: network models, novel therapeutic target strategies, and the contributions of hypoxia, inflammation and cellular senescence. Semin Cancer Biol 2015;30:42-51.

138. Soncini M, Vertua E, Gibelli L, Zorzi F, Denegri M, et al. Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 2007;1:296-305.

139. Marconi A, Borroni RG, Truzzi F, Longo C, Pistoni F, et al. Hypoxia-inducible factor-1alpha and CD271 inversely correlate with melanoma invasiveness. Exp Dermatol 2015;24:396-8.

140. Beretti F, Manni P, Longo C, Argenziano G, Farnetani F, et al. CD271 is expressed in melanomas with more aggressive behaviour, with correlation of characteristic morphology by in vivo reflectance confocal microscopy. Br J Dermatol 2015;172:662-8.

141. Kumar SM, Liu S, Lu H, Zhang H, Zhang PJ, et al. Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation. Oncogene 2012;31:4898-911.

142. Saltari A, Truzzi F, Quadri M, Lotti R, Palazzo E, et al. CD271 down-regulation promotes melanoma progression and invasion in three-dimensional models and in zebrafish. J Invest Dermatol 2016;136:2049-58.

143. Restivo G, Diener J, Cheng PF, Kiowski G, Bonalli M, et al. Low neurotrophin receptor CD271 regulates phenotype switching in melanoma. Nat Commun 2017;8:1988.

144. Strizzi L, Bianco C, Normanno N, Salomon D. Cripto-1: a multifunctional modulator during embryogenesis and oncogenesis. Oncogene 2005;24:5731-41.

145. Bianco C, Rangel MC, Castro NP, Nagaoka T, Rollman K, et al. Role of Cripto-1 in stem cell maintenance and malignant progression. Am J Pathol 2010;177:532-40.

146. Shukla A, Ho Y, Liu X, Ryscavage A, Glick AB. Cripto-1 alters keratinocyte differentiation via blockade of transforming growth factor-beta1 signaling: role in skin carcinogenesis. Mol Cancer Res 2008;6:509-16.

147. Yan YT, Liu JJ, Luo Y,  E C, Haltiwanger RS, et al. Dual roles of cripto as a ligand and coreceptor in the nodal signaling pathway. Molecular and Cellular Biology 2002;22:4439-49.

148. Saeki T, Stromberg K, Qi CF, Gullick WJ, Tahara E, et al. Differential immunohistochemical detection of amphiregulin and cripto in human normal colon and colorectal tumors. Cancer Res 1992;52:3467-73.

149. Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 2010;15:117-34.

150. Bianco C, Strizzi L, Mancino M, Rehman A, Hamada S, et al. Identification of cripto-1 as a novel serologic marker for breast and colon cancer. Clin Cancer Res 2006;12:5158-64.

151. Rangel MC, Bertolette D, Castro NP, Klauzinska M, Cuttitta F, et al. Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer. Breast Cancer Res Treat 2016;156:211-26.

152. Lee KE, Simon MC. From stem cells to cancer stem cells: HIF takes the stage. Curr Opin Cell Biol 2012;24:232-5.

153. Bianco C, Cotten C, Lonardo E, Strizzi L, Baraty C, et al. Cripto-1 is required for hypoxia to induce cardiac differentiation of mouse embryonic stem cells. Am J Pathol 2009;175:2146-58.

154. Hale AJ, Ter Steege E, den Hertog J. Recent advances in understanding the role of protein-tyrosine phosphatases in development and disease. Dev Biol 2017;428:283-92.

155. Yang Z, Zhang C, Qi W, Cui C, Cui Y, et al. Tenascin-C as a prognostic determinant of colorectal cancer through induction of epithelial-to-mesenchymal transition and proliferation. Exp Mol Pathol 2018;105:216-22.

156. Jang TJ, Park JB, Lee JI. The expression of CD10 and CD15 is progressively increased during colorectal cancer development. Korean J Pathol 2013;47:340-7.

157. Pruszak J, Sonntag KC, Aung MH, Sanchez-Pernaute R, Isacson O. Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. Stem Cells 2007;25:2257-68.

158. Giordano G, Febbraro A, Tomaselli E, Sarnicola ML, Parcesepe P, et al. Cancer-related CD15/FUT4 overexpression decreases benefit to agents targeting EGFR or VEGF acting as a novel RAF-MEK-ERK kinase downstream regulator in metastatic colorectal cancer. J Exp Clin Cancer Res 2015;34:108.

159. Yaji S, Manya H, Nakagawa N, Takematsu H, Endo T, et al. Major glycan structure underlying expression of the Lewis X epitope in the developing brain is O-mannose-linked glycans on phosphacan/RPTPbeta. Glycobiology 2015;25:376-85.

160. Laczmanska I, Karpinski P, Gil J, Laczmanski L, Makowska I, et al. The PTPN13 Y2081D (T>G) (rs989902) polymorphism is associated with an increased risk of sporadic colorectal cancer. Colorectal Dis 2017;19:O272-O8.

161. Gupta RA, Dubois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 2001;1:11-21.

162. Subbaramaiah K, Dannenberg AJ. Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci 2003;24:96-102.

163. Reddy BS, Hirose Y, Lubet R, Steele V, Kelloff G, et al. Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Res 2000;60:293-7.

164. Liu Y, Sun H, Hu M, Zhang Y, Chen S, et al. The role of Cyclooxygenase-2 in colorectal carcinogenesis. Clin Colorectal Cancer 2017;16:165-72.

165. Cai J, Huang L, Huang J, Kang L, Lin H, et al. Associations between the cyclooxygenase-2 expression in circulating tumor cells and the clinicopathological features of patients with colorectal cancer. J Cell Biochem 2018; doi: 10.1002/jcb.27768.

166. Zhang L, Tong Y, Zhang X, Pan M, Chen S. Arsenic sulfide combined with JQ1, chemotherapy agents, or celecoxib inhibit gastric and colon cancer cell growth. Drug Des Devel Ther 2015;9:5851-62.

167. Dixon DA, Blanco FF, Bruno A, Patrignani P. Mechanistic aspects of COX-2 expression in colorectal neoplasia. Recent Results Cancer Res 2013;191:7-37.

168. Wang D, Dubois RN. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 2010;29:781-8.

169. Hawcroft G, Ko CW, Hull MA. Prostaglandin E2-EP4 receptor signalling promotes tumorigenic behaviour of HT-29 human colorectal cancer cells. Oncogene 2007;26:3006-19.

170. Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM. Cyclooxygenases in cancer: progress and perspective. Cancer Lett 2004;215:1-20.

171. Wang D, Fu L, Sun H, Guo L, DuBois RN. Prostaglandin E2 promotes colorectal cancer stem cell expansion and metastasis in mice. Gastroenterology 2015;149:1884-95.e4.

172. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74.

173. Sawaoka H, Tsuji S, Tsujii M, Gunawan ES, Sasaki Y, et al. Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo. Lab Invest 1999;79:1469-77.

174. Ghanghas P, Jain S, Rana C, Sanyal SN. Chemoprevention of colon cancer through inhibition of angiogenesis and induction of apoptosis by nonsteroidal anti-inflammatory drugs. J Environ Pathol Toxicol Oncol 2016;35:273-89.

175. Divvela AKC, Challa SR, Tagaram IK. Pathogenic role of cyclooxygenase-2 in cancer. J Health Sci 2010;56:502-16.

176. Xu L, Croix BS. Improving VEGF-targeted therapies through inhibition of COX-2/PGE2 signaling. Mol Cell Oncol 2014;1:e969154.

177. Leung WK, To KF, Go MY, Chan KK, Chan FK, et al. Cyclooxygenase-2 upregulates vascular endothelial growth factor expression and angiogenesis in human gastric carcinoma. Int J Oncol 2003;23:1317-22.

178. Yu HG, Li JY, Yang YN, Luo HS, Yu JP, et al. Increased abundance of cyclooxygenase-2 correlates with vascular endothelial growth factor-A abundance and tumor angiogenesis in gastric cancer. Cancer Lett 2003;195:43-51.

179. Gallo O, Franchi A, Magnelli L, Sardi I, Vannacci A, et al. Cyclooxygenase-2 pathway correlates with VEGF expression in head and neck cancer. Implications for tumor angiogenesis and metastasis. Neoplasia 2001;3:53-61.

180. Chu J, Lloyd FL, Trifan OC, Knapp B, Rizzo MT. Potential involvement of the cyclooxygenase-2 pathway in the regulation of tumor-associated angiogenesis and growth in pancreatic cancer. Mol Cancer Ther 2003;2:1-7.

181. Yoshida S, Amano H, Hayashi I, Kitasato H, Kamata M, et al. COX-2/VEGF-dependent facilitation of tumor-associated angiogenesis and tumor growth in vivo. Lab Invest 2003;83:1385-94.

182. Gately S, Li WW. Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Semin Oncol 2004;31:2-11.

183. Gungor H, Ilhan N, Eroksuz H. The effectiveness of cyclooxygenase-2 inhibitors and evaluation of angiogenesis in the model of experimental colorectal cancer. Biomed Pharmacother 2018;102:221-9.

184. Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 2015;517:209-13.

185. Pang LY, Hurst EA, Argyle DJ. Cyclooxygenase-2: a role in cancer stem cell survival and repopulation of cancer cells during therapy. Stem Cells Int 2016;2016:2048731.

186. Liu B, Qu L, Yan S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int 2015;15:106.

187. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 2009;30:377-86.

188. Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol 2010;2010:215158.

189. Park GB, Jin DH, Kim D. Sequential treatment with celecoxib and bortezomib enhances the ER stress-mediated autophagy-associated cell death of colon cancer cells. Oncol Lett 2018;16:4526-36.

190. Kobayashi K, Omori K, Murata T. Role of prostaglandins in tumor microenvironment. Cancer Metastasis Rev 2018;37:347-54.

191. Wojdasiewicz P, Poniatowski LA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014;2014:561459.

192. Zelenay S, van der Veen AG, Bottcher JP, Snelgrove KJ, Rogers N, et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 2015;162:1257-70.

193. Pritchard R, Rodriguez-Enriquez S, Pacheco-Velazquez SC, Bortnik V, Moreno-Sanchez R, et al. Celecoxib inhibits mitochondrial O2 consumption, promoting ROS dependent death of murine and human metastatic cancer cells via the apoptotic signalling pathway. Biochem Pharmacol 2018;154:318-34.

194. Ralph SJ, Pritchard R, Rodriguez-Enriquez S, Moreno-Sanchez R, Ralph RK. Hitting the Bull’s-Eye in metastatic cancers-NSAIDs elevate ROS in mitochondria, inducing malignant cell death. Pharmaceuticals (Basel) 2015;8:62-106.

195. Pacheco-Velazquez SC, Robledo-Cadena DX, Hernandez-Resendiz I, Gallardo-Perez JC, Moreno-Sanchez R, et al. Energy metabolism drugs block triple negative breast metastatic cancer cell phenotype. Mol Pharm 2018;15:2151-64.

196. Meng X, Zhang Q, Zheng G, Pang R, Hua T, et al. Doxorubicin combined with celecoxib inhibits tumor growth of medullary thyroid carcinoma in xenografted mice. Oncol Lett 2014;7:2053-8.

197. Chen C, Xu W, Wang CM. Combination of celecoxib and doxorubicin increases growth inhibition and apoptosis in acute myeloid leukemia cells. Leuk Lymphoma 2013;54:2517-22.

198. van Wijngaarden J, van Beek E, van Rossum G, van der Bent C, Hoekman K, et al. Celecoxib enhances doxorubicin-induced cytotoxicity in MDA-MB231 cells by NF-kappaB-mediated increase of intracellular doxorubicin accumulation. Eur J Cancer 2007;43:433-42.

199. Hashitani S, Urade M, Nishimura N, Maeda T, Takaoka K, et al. Apoptosis induction and enhancement of cytotoxicity of anticancer drugs by celecoxib, a selective cyclooxygenase-2 inhibitor, in human head and neck carcinoma cell lines. Int J Oncol 2003;23:665-72.

200. Chu TH, Chan HH, Hu TH, Wang EM, Ma YL, et al. Celecoxib enhances the therapeutic efficacy of epirubicin for Novikoff hepatoma in rats. Cancer Med 2018;7:2567-80.

201. Lin J, Hsiao PW, Chiu TH, Chao JI. Combination of cyclooxygenase-2 inhibitors and oxaliplatin increases the growth inhibition and death in human colon cancer cells. Biochem Pharmacol 2005;70:658-67.

202. Kuhar M, Imran S, Singh N. Celecoxib enhances the chemotherapeutic response of cisplatin and TNF-alpha in SiHa cells through reactive oxygen species-mediated mitochondrial pathway. Int J Biomed Sci 2007;3:176-84.

203. Liu B, Shi ZL, Feng J, Tao HM. Celecoxib, a cyclooxygenase-2 inhibitor, induces apoptosis in human osteosarcoma cell line MG-63 via down-regulation of PI3K/Akt. Cell Biol Int 2008;32:494-501.

204. Kim SH, Kim SH, Song YC, Song YS. Celecoxib potentiates the anticancer effect of cisplatin on vulvar cancer cells independently of cyclooxygenase. Ann N Y Acad Sci 2009;1171:635-41.

205. Li WZ, Wang XY, Li ZG, Zhang JH, Ding YQ. Celecoxib enhances the inhibitory effect of cisplatin on Tca8113 cells in human tongue squamous cell carcinoma in vivo and in vitro. J Oral Pathol Med 2010;39:579-84.

206. Xu HB, Shen FM, Lv QZ. Celecoxib enhanced the cytotoxic effect of cisplatin in chemo-resistant gastric cancer xenograft mouse models through a cyclooxygenase-2-dependent manner. Eur J Pharmacol 2016;776:1-8.

207. Irie T, Tsujii M, Tsuji S, Yoshio T, Ishii S, et al. Synergistic antitumor effects of celecoxib with 5-fluorouracil depend on IFN-gamma. Int J Cancer 2007;121:878-83.

208. Zhao S, Cai J, Bian H, Gui L, Zhao F. Synergistic inhibition effect of tumor growth by using celecoxib in combination with oxaliplatin. Cancer Invest 2009;27:636-40.

209. Chu TH, Chan HH, Kuo HM, Liu LF, Hu TH, et al. Celecoxib suppresses hepatoma stemness and progression by up-regulating PTEN. Oncotarget 2014;5:1475-90.

210. Huang C, Chen Y, Liu H, Yang J, Song X, et al. Celecoxib targets breast cancer stem cells by inhibiting the synthesis of prostaglandin E2 and down-regulating the Wnt pathway activity. Oncotarget 2017;8:115254-69.

211. Jin CH, Wang AH, Chen JM, Li RX, Liu XM, et al. Observation of curative efficacy and prognosis following combination chemotherapy with celecoxib in the treatment of advanced colorectal cancer. J Int Med Res 2011;39:2129-40.

212. Debucquoy A, Roels S, Goethals L, Libbrecht L, Van Cutsem E, et al. Double blind randomized phase II study with radiation+5-fluorouracil+/-celecoxib for resectable rectal cancer. Radiother Oncol 2009;93:273-8.

213. Lin E, Morris JS, Ayers GD. Effect of celecoxib on capecitabine-induced hand-foot syndrome and antitumor activity. Oncology (Williston Park) 2002;16:31-7.

214. Lin EH, Curley SA, Crane CC, Feig B, Skibber J, et al. Retrospective study of capecitabine and celecoxib in metastatic colorectal cancer: potential benefits and COX-2 as the common mediator in pain, toxicities and survival? Am J Clin Oncol 2006;29:232-9.

215. Arber N, Eagle CJ, Spicak J, Racz I, Dite P, et al. Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med 2006;355:885-95.

216. Arber N, Spicak J, Racz I, Zavoral M, Breazna A, et al. Five-year analysis of the prevention of colorectal sporadic adenomatous polyps trial. Am J Gastroenterol 2011;106:1135-46.

217. Bertagnolli MM, Eagle CJ, Zauber AG, Redston M, Breazna A, et al. Five-year efficacy and safety analysis of the Adenoma Prevention with Celecoxib Trial. Cancer Prev Res (Phila) 2009;2:310-21.

218. Mason RP, Walter MF, Day CA, Jacob RF. A biological rationale for the cardiotoxic effects of rofecoxib: comparative analysis with other COX-2 selective agents and NSAids. Subcell Biochem 2007;42:175-90.

219. Nissen SE, Yeomans ND, Solomon DH, Luscher TF, Libby P, et al. Cardiovascular safety of Celecoxib, Naproxen, or Ibuprofen for arthritis. N Engl J Med 2016;375:2519-29.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)


All published articles are preserved here permanently:


All published articles are preserved here permanently: