REFERENCES

1. Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 2004;305:1163-7.

2. Lazzara MJ, Lane K, Chan R, Jasper PJ, Yaffe MB, et al. Impaired SHP2-mediated extracellular signal-regulated kinase activation contributes to gefitinib sensitivity of lung cancer cells with epidermal growth factor receptor-activating mutations. Cancer Res 2010;70:3843-50.

3. Karachaliou N, Fernandez-Bruno M, Bracht JWP, Rosell R. EGFR first- and second-generation TKIs-there is still place for them in EGFR-mutant NSCLC patients. Transl Cancer Res 2018; doi: 10.21037/tcr.2018.10.06.

4. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012;13:239-46.

5. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 2018;378:113-25.

6. Chaib I, Karachaliou N, Pilotto S, Codony Servat J, Cai X, et al. Co-activation of STAT3 and YES-associated protein 1 (YAP1) pathway in EGFR-mutant NSCLC. J Natl Cancer Inst 2017;109.

7. Codony-Servat C, Codony-Servat J, Karachaliou N, Molina MA, Chaib I, et al. Activation of signal transducer and activator of transcription 3 (STAT3) signaling in EGFR mutant non-small-cell lung cancer (NSCLC). Oncotarget 2017;8:47305-16.

8. Karachaliou N, Chaib I, Cardona AF, Berenguer J, Bracht JWP, et al. Common Co-activation of AXL and CDCP1 in EGFR-mutation-positive Non-smallcell lung cancer associated with poor prognosis. EBioMedicine 2018;29:112-27.

9. Gao SP, Mark KG, Leslie K, Pao W, Motoi N, et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 2007;117:3846-56.

10. Fan W, Tang Z, Yin L, Morrison B, Hafez-Khayyata S, et al. MET-independent lung cancer cells evading EGFR kinase inhibitors are therapeutically susceptible to BH3 mimetic agents. Cancer Res 2011;71:4494-505.

11. Lee HJ, Zhuang G, Cao Y, Du P, Kim HJ, et al. Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells. Cancer Cell 2014;26:207-21.

12. Zhong Z, Wen Z, Darnell JE Jr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 1994;264:95-8.

13. Nan J, Du Y, Chen X, Bai Q, Wang Y, et al. TPCA-1 is a direct dual inhibitor of STAT3 and NF-kappaB and regresses mutant EGFR-associated human non-small cell lung cancers. Mol Cancer Ther 2014;13:617-29.

14. Tursynbay Y, Zhang J, Li Z, Tokay T, Zhumadilov Z, et al. Pim-1 kinase as cancer drug target: An update. Biomed Rep 2016;4:140-6.

15. Casillas AL, Toth RK, Sainz AG, Singh N, Desai AA, et al. Hypoxia-Inducible PIM kinase expression promotes resistance to antiangiogenic agents. Clin Cancer Res 2018;24:169-80.

16. Cen B, Mahajan S, Wang W, Kraft AS. Elevation of receptor tyrosine kinases by small molecule AKT inhibitors in prostate cancer is mediated by Pim-1. Cancer Res 2013;73:3402-11.

17. Zhang M, Liu T, Sun H, Weng W, Zhang Q, et al. Pim1 supports human colorectal cancer growth during glucose deprivation by enhancing the Warburg effect. Cancer Science 2018;109:1468-79.

18. Weirauch U, Beckmann N, Thomas M, Grunweller A, Huber K, et al. Functional role and therapeutic potential of the Pim-1 kinase in colon carcinoma. Neoplasia 2013;15:783-94.

19. Liu K, Gao H, Wang Q, Wang L, Zhang B, et al. Hispidulin suppresses cell growth and metastasis by targeting PIM1 through JAK2/STAT3 signaling in colorectal cancer. Cancer Sci 2018;109:1369-81.

20. Braso-Maristany F, Filosto S, Catchpole S, Marlow R, Quist J, et al. PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer. Nat Med 2016;22:1303-13.

21. Zhao W, Qiu R, Li P, Yang J. PIM1: a promising target in patients with triple-negative breast cancer. Med Oncol 2017;34:142.

22. Keane NA, Reidy M, Natoni A, Raab MS, O’Dwyer M. Targeting the Pim kinases in multiple myeloma. Blood Cancer J 2015;5:e325.

23. Koblish H, Li YL, Shin N, Hall L, Wang Q, et al. Preclinical characterization of INCB053914, a novel pan-PIM kinase inhibitor, alone and in combination with anticancer agents, in models of hematologic malignancies. PLoS One 2018;13:e0199108.

24. Kuo HP, Ezell SA, Hsieh S, Schweighofer KJ, Cheung LW, et al. The role of PIM1 in the ibrutinib-resistant ABC subtype of diffuse large B-cell lymphoma. Am J Cancer Res 2016;6:2489-501.

25. Brunen D, de Vries RC, Lieftink C, Beijersbergen RL, Bernards R. PIM kinases are a potential prognostic biomarker and therapeutic target in neuroblastoma. Mol Cancer Ther 2018;17:849-57.

26. An N, Xiong Y, LaRue AC, Kraft AS, Cen B. Activation of Pim kinases is sufficient to promote resistance to MET small-molecule inhibitors. Cancer Res 2015;75:5318-28.

27. Warfel NA, Sainz AG, Song JH, Kraft AS. PIM kinase inhibitors kill hypoxic tumor cells by reducing Nrf2 signaling and increasing reactive oxygen species. Mol Cancer Ther 2016;15:1637-47.

28. Jin B, Wang Y, Wu CL, Liu KY, Chen H, et al. PIM-1 modulates cellular senescence and links IL-6 signaling to heterochromatin formation. Aging Cell 2014;13:879-89.

29. Liu J, Qu X, Shao L, Hu Y, Yu X, et al. Pim-3 enhances melanoma cell migration and invasion by promoting STAT3 phosphorylation. Cancer Biol Ther 2018;19:160-8.

30. Lee M, Lee KH, Min A, Kim J, Kim S, et al. Pan-Pim kinase inhibitor AZD1208 suppresses tumor growth and synergistically interacts with akt inhibition in gastric cancer cells. Cancer Res Treat 2018; doi: 10.4143/crt.2017.341.

31. Cen B, Xiong Y, Song JH, Mahajan S, DuPont R, et al. The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling. Mol Cell Biol 2014;34:2517-32.

32. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 2010;70:440-6.

33. Narayan RS, Fedrigo CA, Brands E, Dik R, Stalpers LJ, et al. The allosteric AKT inhibitor MK2206 shows a synergistic interaction with chemotherapy and radiotherapy in glioblastoma spheroid cultures. BMC Cancer 2017;17:204.

34. Karachaliou N, Cardona AF, Bracht JWP, Aldeguer E, Drozdowskyj A, et al. Integrin-linked kinase (ILK) and src homology 2 domain-containing phosphatase 2 (SHP2): novel targets in EGFR-mutation positive non-small cell lung cancer (NSCLC). EBioMedicine 2019;39:207-14.

35. Ettinger DS, Aisner DL, Wood DE, Akerley W, Bauman J, et al. NCCN guidelines insights: non-small cell lung cancer, version 5.2018. J Natl Compr Canc Netw 2018;16:807-21.

36. Raab MS, Ocio EM, Thomas SK, Günther A, Goh YT, et al. Phase 1 study update of the novel pan-pim kinase inhibitor LGH447 in patients with relapsed/refractory multiple myeloma. Blood 2014.

37. Paino T, Garcia-Gomez A, Gonzalez-Mendez L, San-Segundo L, Hernandez-Garcia S, et al. The novel Pan-PIM kinase inhibitor, PIM447, displays dual antimyeloma and bone-protective effects, and potently synergizes with current standards of care. Clin Cancer Res 2017;23:225-38.

38. Langowski JL, Holash J, Burger M, Zang R, Zavorotinskaya T, et al. The Pan-PIM kinase inhibitor LGH447 shows activity in PIM2-dependent multiple myeloma and in AML models. Blood 2013;122:1666.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/