REFERENCES
1. Withrow DR, de Gonzalez AB, Lam CJK, Warren KE, Shiels MS. Trends in pediatric central nervous system tumor incidence in the United States, 1998-2013. Cancer Epidemiol Biomarkers Prev 2019;28:522-30.
3. Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin 2014;64:83-103.
4. Khatua S, Ramaswamy V, Bouffet E. Current therapy and the evolving molecular landscape of paediatric ependymoma. Eur J Cancer 2017;70:34-41.
5. Qaddoumi I, Sultan I, Gajjar A. Outcome and prognostic features in pediatric gliomas: a review of 6212 cases from the surveillance, epidemiology, and end results database. Cancer 2009;115:5761-70.
6. Bornhorst M, Frappaz D, Packer RJ. Pilocytic astrocytomas. Handb Clin Neurol 2016;134:329-44.
7. Ramaswamy V, Remke M, Adamski J, Bartels U, Tabori U, et al. Medulloblastoma subgroup-specific outcomes in irradiated children: who are the true high-risk patients? Neuro Oncol 2016;18:291-7.
8. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 2012;123:465-72.
9. Dörner L, Fritsch MJ, Stark AM, Mehdorn HM. Posterior fossa tumors in children: how long does it take to establish the diagnosis? Childs Nerv Syst 2007;23:887-90.
10. Andropoulos DB, Greene MF. Anesthesia and developing brains - implications of the FDA warning. N Engl J Med 2017;376:905-7.
11. Sheppard JP, Nguyen T, Alkhalid Y, Beckett JS, Salamon N, et al. Risk of brain tumor induction from pediatric head CT procedures: a systematic literature review. Brain Tumor Res Treat 2018;6:1-7.
12. Bjur KA, Payne ET, Nemergut ME, Hu D, Flick RP. Anesthetic-related neurotoxicity and neuroimaging inchildren: a call for conversation. J Child Neurol 2017;32:594-602.
13. Tomita T, McLone DG. Spontaneous seeding of medulloblastoma: results of cerebrospinal fluid cytology and arachnoid biopsy from the cisterna magna. Neurosurgery 1983;12:265-7.
15. Gajjar A, Fouladi M, Walter AW, Thompson SJ, Reardon DA, et al. Comparison of lumbar and shunt cerebrospinal fluid specimens for cytologic detection of leptomeningeal disease in pediatric patients with brain tumors. J Clin Oncol 1999;17:1825-8.
16. Zorofchian S, Iqbal F, Rao M, Aung PP, Esquenazi Y, et al. Circulating tumour DNA, microRNA and metabolites in cerebrospinal fluid as biomarkers for central nervous system malignancies. J Clin Pathol 2019;72:271-280.
17. Shalaby T, Achini F, Grotzer MA. Targeting cerebrospinal fluid for discovery of brain cancer biomarkers. J Cancer Metastasis Treat 2016;2:176-87.
18. Kurman RJ, Scardino PT, McIntire KR, Waldmann TA, Javadpour N. Cellular localization of alpha-fetoprotein and human chorionic gonadotropin in germ cell tumors of the testis using and indirect immunoperoxidase technique. Cancer 1977;40:2136-51.
19. Allen JC, Nisselbaum J, Epstein F, Rosen G, Schwartz MK. Alphafetoprotein and human chorionic gonadotropin determination in cerebrospinal fluid. An aid to the diagnosis and management of intracranial germ-cell tumors. J Neurosurg 1979;51:368-74.
20. Qaddoumi I, Sane M, Li S, Kocak M, Pai-Panandiker A, et al. Diagnostic utility and correlation of tumor markers in the serum and cerebrospinal fluid of children with intracranial germ cell tumors. Childs Nerv Syst 2012;28:1017-24.
21. Seregni E, Massimino M, Nerini Molteni S, Pallotti F, van der Hiel B, et al. Serum and cerebrospinal fluid human chorionic gonadotropin (hCG) and alpha-fetoprotein (AFP) in intracranial germ cell tumors. Int J Biol Markers 2002;17:112-8.
22. Fukuoka K, Yanagisawa T, Suzuki T, Shirahata M, Adachi JI, et al. Human chorionic gonadotropin detection in cerebrospinal fluid of patients with a germinoma and its prognostic significance: assessment by using a highly sensitive enzyme immunoassay. J Neurosurg Pediatr 2016;18:573-7.
23. Allen J, Chacko J, Donahue B, Dhall G, Kretschmar C, et al. Diagnostic sensitivity of serum and lumbar CSF bHCG in newly diagnosed CNS germinoma. Pediatr Blood Cancer 2012;59:1180-2.
24. Seehusen DA, Reeves MM, Fomin DA. Cerebrospinal fluid analysis. Am Fam Physician 2003;68:1103-8.
26. Peng M, Chen C, Hulbert A, Brock MV, Yu F. Non-blood circulating tumor DNA detection in cancer. Oncotarget 2017;8:69162-73.
27. Pentsova EI, Shah RH, Tang J, Boire A, You D, et al. Evaluating cancer of the central nervous system through next-generation sequencing of cerebrospinal fluid. J Clin Oncol 2016;34:2404-15.
28. Ballester LY, Glitza Oliva IC, Douse DY, Chen MM, Lan C, et al. Evaluating circulating tumor DNA from the cerebrospinal fluid of patients with melanoma and leptomeningeal disease. J Neuropathol Exp Neurol 2018;77:628-35.
29. Kennedy SR, Schmitt MW, Fox EJ, Kohrn BF, Salk JJ, et al. Detecting ultralow-frequency mutations by duplex sequencing. Nat Protoc 2014;9:2586-606.
30. Li Y, Pan W, Connolly ID, Reddy S, Nagpal S, et al. Tumor DNA in cerebral spinal fluid reflects clinical course in a patient with melanoma leptomeningeal brain metastases. J Neurooncol 2016;128:93-100.
31. Swinkels DW, de Kok JB, Hanselaar A, Lamers K, Boerman RH. Early detection of leptomeningeal metastasis by PCR examination of tumor-derived K-ras DNA in cerebrospinal fluid. Clin Chem 2000;46:132-3.
32. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 2012;44:251-3.
33. Wolff JE, Rytting ME, Vats TS, Zage PE, Ater JL, et al. Treatment of recurrent diffuse intrinsic pontine glioma: the MD anderson cancer center experience. J Neurooncol 2012;106:391-7.
34. Huang TY, Piunti A, Lulla RR, Qi J, Horbinski CM, et al. Detection of histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma. Acta Neuropathol Commun 2017;5:28.
35. Panditharatna E, Kilburn LB, Aboian MS, Kambhampati M, Gordish-Dressman H, et al. Clinically relevant and minimally invasive tumor surveillance of pediatric diffuse midline gliomas using patient-derived liquid biopsy. Clin Cancer Res 2018;24:5850-9.
36. Wang Y, Springer S, Zhang M, McMahon KW, Kinde I, et al. Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci U S A 2015;112:9704-9.
37. Connolly ID, Li Y, Pan W, Johnson E, You L, et al. A pilot study on the use of cerebrospinal fluid cell-free DNA in intramedullary spinal ependymoma. J Neurooncol 2017;135:29-36.
38. Kala R, Peek GW, Hardy TM, Tollefsbol TO. MicroRNAs: an emerging science in cancer epigenetics. J Clin Bioinforma 2013;3:6.
39. Morozova N, Zinovyev A, Nonne N, Pritchard LL, Gorban AN, et al. Kinetic signatures of microRNA modes of action. RNA 2012;18:1635-55.
40. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15-20.
41. Bookland M, Tang-Schomer M, Gillan E, Kolmakova A. Circulating serum oncologic miRNA in pediatric juvenile pilocytic astrocytoma patients predicts mural nodule volume. Acta Neurochir (Wien) 2018;160:1571-81.
42. Costa FF, Bischof JM, Vanin EF, Lulla RR, Wang M, et al. Identification of microRNAs as potential prognostic markers in ependymoma. PLoS One 2011;6:e25114.
43. Vidal DO, Marques MM, Lopes LF, Reis RM. The role of microRNAs in medulloblastoma. Pediatr Hematol Oncol 2013;30:367-78.
44. Akers JC, Ramakrishnan V, Kim R, Phillips S, Kaimal V, et al. miRNA contents of cerebrospinal fluid extracellular vesicles in glioblastoma patients. J Neurooncol 2015;123:205-16.
45. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008;10:1470-6.
46. Tűzesi Á, Kling T, Wenger A, Lunavat TR, Jang SC, et al. Pediatric brain tumor cells release exosomes with a miRNA repertoire that differs from exosomes secreted by normal cells. Oncotarget 2017;8:90164-75.
47. Baraniskin A, Kuhnhenn J, Schlegel U, Maghnouj A, Zöllner H, et al. Identification of microRNAs in the cerebrospinal fluid as biomarker for the diagnosis of glioma. Neuro Oncol 2012;14:29-33.
48. Shi R, Wang PY, Li XY, Chen JX, Li Y, et al. Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Oncotarget 2015;6:26971-81.
49. Drusco A, Bottoni A, Laganà A, Acunzo M, Fassan M, et al. A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF) can diagnose CNS malignancies. Oncotarget 2015;6:20829-39.
50. Xu X, Zhang F, Chen X, Ying Q. MicroRNA-518b functions as a tumor suppressor in glioblastoma by targeting PDGFRB. Mol Med Rep 2017;16:5326-32.
51. Blüml S, Margol AS, Sposto R, Kennedy RJ, Robison NJ, et al. Molecular subgroups of medulloblastoma identification using noninvasive magnetic resonance spectroscopy. Neuro Oncol 2016;18:126-31.
52. Nakamizo S, Sasayama T, Shinohara M, Irino Y, Nishiumi S, et al. GC/MS-based metabolomic analysis of cerebrospinal fluid (CSF) from glioma patients. J Neurooncol 2013;113:65-74.
53. Kalinina J, Ahn J, Devi NS, Wang L, Li Y, et al. Selective detection of the D-enantiomer of 2-Hydroxyglutarate in the CSF of glioma patients with mutated isocitrate dehydrogenase. Clin Cancer Res 2016;22:6256-65.
54. Bostrom B, Mirkin BL. Elevation of cerebrospinal fluid catecholamine metabolites in patients with intracranial tumors of neuroectodermal origin. J Clin Oncol 1987;5:1090-7.
55. Varela M, Alexiou GA, Liakopoulou M, Papakonstantinou E, Pitsouni D, et al. Monoamine metabolites in ventricular CSF of children with posterior fossa tumors: correlation with tumor histology and cognitive functioning. J Neurosurg Pediatr 2014;13:375-9.
56. Del Valle L, Enam S, Lassak A, Wang JY, Croul S, et al. Insulin-like growth factor I receptor activity in human medulloblastomas. Clin Cancer Res 2002;8:1822-30.
58. Gallagher EJ, LeRoith D. Is growth hormone resistance/IGF-1 reduction good for you? Cell Metab 2011;13:355-6.
59. de Bont JM, den Boer ML, Reddingius RE, Jansen J, Passier M, et al. Identification of apolipoprotein A-II in cerebrospinal fluid of pediatric brain tumor patients by protein expression profiling. Clin Chem 2006;52:1501-9.
60. de Bont JM, Vanderstichele H, Reddingius RE, Pieters R, van Gool SW. Increased total-Tau levels in cerebrospinal fluid of pediatric hydrocephalus and brain tumor patients. Eur J Paediatr Neurol 2008;12:334-41.
61. de Bont JM, van Doorn J, Reddingius RE, Graat GH, Passier MM, et al. Various components of the insulin-like growth factor system in tumor tissue, cerebrospinal fluid and peripheral blood of pediatric medulloblastoma and ependymoma patients. Int J Cancer 2008;123:594-600.
62. Desiderio C, D'Angelo L, Rossetti DV, Iavarone F, Giardina B, et al. Cerebrospinal fluid top-down proteomics evidenced the potential biomarker role of LVV- and VV-hemorphin-7 in posterior cranial fossa pediatric brain tumors. Proteomics 2012;12:2158-66.
63. Saratsis AM, Yadavilli S, Magge S, Rood BR, Perez J, et al. Insights into pediatric diffuse intrinsic pontine glioma through proteomic analysis of cerebrospinal fluid. Neuro Oncol 2012;14:547-60.
64. Rajagopal MU, Hathout Y, MacDonald TJ, Kieran MW, Gururangan S, et al. Proteomic profiling of cerebrospinal fluid identifies prostaglandin D2 synthase as a putative biomarker for pediatric medulloblastoma: a pediatric brain tumor consortium study. Proteomics 2011;11:935-43.
65. Wilne S, Collier J, Kennedy C, Koller K, Grundy R, et al. Presentation of childhood CNS tumours: a systematic review and meta-analysis. Lancet Oncol 2007;8:685-95.
66. Kumar A, Agrawal M, Prakash S, Somorendra S, Singh PK, et al. Acute foramen magnum syndrome following single diagnostic lumbar puncture: consequence of a small posterior fossa? World Neurosurg 2016;91:677.e1-7.
67. Nonaka T, Wong DTW. Liquid biopsy in head and neck cancer: promises and challenges. J Dent Res 2018;97:701-8.
68. Hsiao YC, Chu LJ, Chen YT, Chi LM, Chien KY, et al. Variability assessment of 90 salivary proteins in intraday and interday samples from healthy donors by multiple reaction monitoring-mass spectrometry. Proteomics Clin Appl 2018;12.
69. Nolen BM, Orlichenko LS, Marrangoni A, Velikokhatnaya L, Prosser D, et al. An extensive targeted proteomic analysis of disease-related protein biomarkers in urine from healthy donors. PLoS One 2013;8:e63368.
71. Shalaby T, Fiaschetti G, Baumgartner M, Grotzer MA. Significance and therapeutic value of miRNAs in embryonal neural tumors. Molecules 2014;19:5821-62.
72. Hao TB, Shi W, Shen XJ, Qi J, Wu XH, et al. Circulating cell-free DNA in serum as a biomarker for diagnosis and prognostic prediction of colorectal cancer. Br J Cancer 2014;111:1482-9.
73. Zhou Q, Liu J, Quan J, Liu W, Tan H, et al. MicroRNAs as potential biomarkers for the diagnosis of glioma: a systematic review and meta-analysis. Cancer Sci 2018;109:2651-9.
74. Ivo D'Urso P, Fernando D'Urso O, Damiano Gianfreda C, Mezzolla V, Storelli C, et al. miR-15b and miR-21 as circulating biomarkers for diagnosis of glioma. Curr Genomics 2015;16:304-11.
75. Rani S, Gately K, Crown J, O'Byrne K, O'Driscoll L. Global analysis of serum microRNAs as potential biomarkers for lung adenocarcinoma. Cancer Biol Ther 2013;14:1104-12.
76. Sierzega M, Kaczor M, Kolodziejczyk P, Kulig J, Sanak M, et al. Evaluation of serum microRNA biomarkers for gastric cancer based on blood and tissue pools profiling: the importance of miR-21 and miR-331. Br J Cancer 2017;117:266-73.
77. Wang W, Li W, Ding M, Yuan H, Yang J, et al. Identification of miRNAs as non-invasive biomarkers for early diagnosis of lung cancers. Tumour Biol 2016; doi: 10.1007/s13277-016-5442-y.
78. Wen Y, Han J, Chen J, Dong J, Xia Y, et al. Plasma miRNAs as early biomarkers for detecting hepatocellular carcinoma. Int J Cancer 2015;137:1679-90.
79. Wu Q, Lu Z, Li H, Lu J, Guo L, et al. Next-generation sequencing of microRNAs for breast cancer detection. J Biomed Biotechnol 2011;2011:597145.
80. Ferretti E, De Smaele E, Miele E, Laneve P, Po A, et al. Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 2008;27:2616-27.
81. Regazzo G, Terrenato I, Spagnuolo M, Carosi M, Cognetti G, et al. A restricted signature of serum miRNAs distinguishes glioblastoma from lower grade gliomas. J Exp Clin Cancer Res 2016;35:124.
82. Goto G, Hori Y, Ishikawa M, Tanaka S, Sakamoto A. Changes in the gene expression levels of microRNAs in the rat hippocampus by sevoflurane and propofol anesthesia. Mol Med Rep 2014;9:1715-22.
83. Rangaswami H, Bulbule A, Kundu GC. Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol 2006;16:79-87.
84. Kao CL, Chiou SH, Ho DM, Chen YJ, Liu RS, et al. Elevation of plasma and cerebrospinal fluid osteopontin levels in patients with atypical teratoid/rhabdoid tumor. Am J Clin Pathol 2005;123:297-304.
85. Bacolod MD, Johnson SP, Ali-Osman F, Modrich P, Bullock NS, et al. Mechanisms of resistance to 1,3-bis(2-chloroethyl)-1-nitrosourea in human medulloblastoma and rhabdomyosarcoma. Mol Cancer Ther 2002;1:727-36.
86. Bacolod MD, Fehdrau R, Johnson SP, Bullock NS, Bigner DD, et al. BCNU-sequestration by metallothioneins may contribute to resistance in a medulloblastoma cell line. Cancer Chemother Pharmacol 2009;63:753-8.
87. Krizkova S, Fabrik I, Adam V, Kukacka J, Prusa R, et al. Utilizing of adsorptive transfer stripping technique brdicka reaction for determination of metallothioneins level in melanoma cells, blood serum and tissues. Sensors (Basel) 2008;8:3106-22.
88. Krizkova S, Masarik M, Majzlik P, Kukacka J, Kruseova J, et al. Serum metallothionein in newly diagnosed patients with childhood solid tumours. Acta Biochim Pol 2010;57:561-6.
89. Sobol-Milejska G, Mizia-Malarz A, Musiol K, Chudek J, Bozentowicz-Wikarek M, et al. Serum levels of vascular endothelial growth factor and basic fibroblast growth factor in children with brain tumors. Adv Clin Exp Med 2017;26:571-5.
90. Weathers SP, de Groot J. VEGF manipulation in glioblastoma. Oncology (Williston Park) 2015;29:720-7.
91. Behrends U, Schneider I, Rössler S, Frauenknecht H, Golbeck A, et al. Novel tumor antigens identified by autologous antibody screening of childhood medulloblastoma cDNA libraries. Int J Cancer 2003;106:244-51.
92. Verly IR, van Kuilenburg AB, Abeling NG, Goorden SM, Fiocco M, et al. Catecholamines profiles at diagnosis: increased diagnostic sensitivity and correlation with biological and clinical features in neuroblastoma patients. Eur J Cancer 2017;72:235-43.
93. Pricola Fehnel K, Duggins-Warf M, Zurakowski D, McKee-Proctor M, Majumder R, et al. Using urinary bFGF and TIMP3 levels to predict the presence of juvenile pilocytic astrocytoma and establish a distinct biomarker signature. J Neurosurg Pediatr 2016;18:396-407.
94. Smith ER, Zurakowski D, Saad A, Scott RM, Moses MA. Urinary biomarkers predict brain tumor presence and response to therapy. Clin Cancer Res 2008;14:2378-86.
95. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro Oncol 2018;20:iv1-iv86.
96. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014;6:224ra24.
97. Pages M, Rotem D, Gydush G, Reed S, Rhoades J, et al. Liquid biopsy detection of genomic alterations in pediatric brain tumors from cell free DNA in peripheral blood, CSF, and urine. Neuro-Oncology 2018;20:vi142-3.
98. Spreafico F, Bongarzone I, Pizzamiglio S, Magni R, Taverna E, et al. Proteomic analysis of cerebrospinal fluid from children with central nervous system tumors identifies candidate proteins relating to tumor metastatic spread. Oncotarget 2017;8:46177-90.
99. Cengiz P, Zemlan F, Eickhoff JC, Ellenbogen R, Zimmerman JJ. Increased cerebrospinal fluid cleaved tau protein (C-tau) levels suggest axonal damage in pediatric patients with brain tumors. Childs Nerv Syst 2015;31:1313-9.
100. Murray MJ, Bell E, Raby KL, Rijlaarsdam MA, Gillis AJ, et al. A pipeline to quantify serum and cerebrospinal fluid microRNAs for diagnosis and detection of relapse in paediatric malignant germ-cell tumours. Br J Cancer 2016;114:151-62.
101. Banfield E, Brown AL, Peckham EC, Rednam SP, Murray J, et al. Exploratory analysis of ERCC2 DNA methylation in survival among pediatric medulloblastoma patients. Cancer Epidemiol 2016;44:161-6.