REFERENCES

1. Bachmann J, Heiligensetzer M, Krakowski-Roosen H, Büchler MW, Friess H, et al. Cachexia worsens prognosis in patients with resectable pancreatic cancer. J Gastrointest Surg 2008;12:1193.

2. Cash E, Sephton SE, Chagpar AB, Spiegel D, Rebholz WN, et al. Circadian disruption and biomarkers of tumor progression in breast cancer patients awaiting surgery. Brain Behav Immun 2015;48:102-14.

3. Palesh O, Aldridge-Gerry A, Zeitzer JM, Koopman C, Neri E, et al. Actigraphy-measured sleep disruption as a predictor of survival among women with advanced breast cancer. Sleep 2014;37:837-42.

4. Sephton SE, Sapolsky RM, Kraemer HC, Spiegel D. Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst 2000;92:994-1000.

5. Zhi J, Khozin S, Kuk D, Torres AZ, Sorg R, et al. Association of baseline body mass index (BMI) with overall survival (OS) in patients (pts) with metastatic non-small cell lung cancer (mNSCLC) treated with nivolumab (N) and pembrolizumab (P). J Clin Oncol 2018;36:6553-3.

6. Borniger JC, Walker Ii WH,  Surbhi, Emmer KM, Zhang N, et al. A role for hypocretin/orexin in metabolic and sleep abnormalities in a mouse model of non-metastatic breast cancer. Cell Metab 2018;28:118-29.e5.

7. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014;513:559-63.

8. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010;140:883-99.

9. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74.

10. Masri S, Papagiannakopoulos T, Kinouchi K, Liu Y, Cervantes M, et al. Lung adenocarcinoma distally rewires hepatic circadian homeostasis. Cell 2016;165:896-909.

11. Antoni MH, Lutgendorf SK, Cole SW, Dhabhar FS, Sephton SE, et al. The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer 2006;6:240-8.

12. Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 2006;12:939-44.

13. Hakim F, Wang Y, Zhang SX, Zheng J, Yolcu ES, et al. Fragmented sleep accelerates tumor growth and progression through recruitment of tumor-associated macrophages and TLR4 signaling. Cancer Res 2014;74:1329-37.

14. Evans JMM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005;330:1304-5.

15. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009;69:7507-11.

16. Dean GE, Redeker NS, Wang YJ, Rogers AE, Dickerson SS, et al. Sleep, mood, and quality of life in patients receiving treatment for lung cancer. Oncol Nurs Forum 2013;40:441-51.

17. Fortner BV, Stepanski EJ, Wang SC, Kasprowicz S, Durrence HH. Sleep and quality of life in breast cancer patients. J Pain Symptom Manage 2002;24:471-80.

18. Zeitlhofer J, Schmeiser-Rieder A, Tribl G, Rosenberger A, Bolitschek J, et al. Sleep and quality of life in the Austrian population. Acta Neurol Scand 2000;102:249-57.

19. Irwin ML, McTiernan A, Baumgartner RN, Baumgartner KB, Bernstein L, et al. Changes in body fat and weight after a breast cancer diagnosis: influence of demographic, prognostic, and lifestyle factors. J Clin Oncol 2005;23:774-82.

20. Davidson JR, MacLean AW, Brundage MD, Schulze K. Sleep disturbance in cancer patients. Soc Sci Med 2002;54:1309-21.

21. Sephton SE, Lush E, Dedert EA, Floyd AR, Rebholz WN, et al. Diurnal cortisol rhythm as a predictor of lung cancer survival. Brain Behav Immun 2013;30:S163-70.

22. Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME. Breast cancer and circadian disruption from electric lighting in the modern world. CA Cancer J Clin 2014;64:207-18.

23. Borniger JC, Gaudier-Diaz MM, Zhang N, Nelson RJ, DeVries AC. Cytotoxic chemotherapy increases sleep and sleep fragmentation in non-tumor-bearing mice. Brain Behav Immun 2015;47:218-27.

24. Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 2016;594:6443-62.

25. Williams G, Bing C, Cai XJ, Harrold JA, King PJ, et al. The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol Behav 2001;74:683-701.

26. Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018;7:1421.

27. Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for arousal and motivation. Front Neurol 2018;9:413.

28. de Lecea L, Kilduff TS, Peyron C, Gao XB, Foye PE, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci 1998;95:322-7.

29. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998;92:573-85.

30. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 1999;98:437-51.

31. Crocker A, España RA, Papadopoulou M, Saper CB, Faraco J, et al. Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology 2005;65:1184-8.

32. Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 2001;30:345-54.

33. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 2000;355:39-40.

34. Geerling JC, Mettenleiter TC, Loewy AD. Orexin neurons project to diverse sympathetic outflow systems. Neuroscience 2003;122:541-50.

35. Yi CX, Serlie MJ, Ackermans MT, Foppen E, Buijs RM, et al. A major role for perifornical orexin neurons in the control of glucose metabolism in rats. Diabetes 2009;58:1998-2005.

36. Bonnavion P, Jackson AC, Carter ME, de Lecea L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat Commun 2015;6:6266.

37. Goforth PB, Leinninger GM, Patterson CM, Satin LS, Myers MG. Leptin acts via lateral hypothalamic area neurotensin neurons to inhibit orexin neurons by multiple GABA-independent mechanisms. J Neurosci 2014;34:11405-15.

38. Håkansson M, De LL, Sutcliffe JG, Yanagisawa M, Meister B. Leptin receptor- and STAT3-immunoreactivities in hypocretin/orexin neurones of the lateral hypothalamus. J Neuroendocrinol 1999;11:653-63.

39. Garofalo C, Koda M, Cascio S, Sulkowska M, Kanczuga-Koda L, et al. Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli. Clin Cancer Res 2006;12:1447-53.

40. Ishikawa M, Kitayama J, Nagawa H. Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clin Cancer Res 2004;10:4325-31.

41. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, et al. A role for ghrelin in the central regulation of feeding. Nature 2001;409:194-8.

42. Olszewski PK, Li D, Grace MK, Billington CJ, Kotz CM, et al. Neural basis of orexigenic effects of ghrelin acting within lateral hypothalamus. Peptides 2003;24:597-602.

43. Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000;407:908-13.

44. García-García F, Juárez-Aguilar E, Santiago-García J, Cardinali DP. Ghrelin and its interactions with growth hormone, leptin and orexins: Implications for the sleep-wake cycle and metabolism. Sleep Med Rev 2014;18:89-97.

45. Toshinai K, Date Y, Murakami N, Shimada M, Mondal MS, et al. Ghrelin-induced food intake is mediated via the orexin pathway. Endocrinology 2003;144:1506-12.

46. Au CC, Furness JB, Brown KA. Ghrelin and breast cancer: emerging roles in obesity, estrogen regulation, and cancer. Front Oncol 2017;6:265.

47. Gahete MD, Córdoba-Chacón J, Hergueta-Redondo M, Martínez-Fuentes AJ, Kineman RD, et al. A novel human ghrelin variant (In1-Ghrelin) and Ghrelin-O-Acyltransferase are overexpressed in breast cancer: potential pathophysiological relevance. PLoS One 2011;6:e23302.

48. Shimizu Y, Nagaya N, Isobe T, Imazu M, Okumura H, et al. Increased plasma ghrelin level in lung cancer cachexia. Clin Cancer Res 2003;9:774-8.

49. McAlpine CS, Kiss MG, Rattik S, He S, Vassalli A, et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 2019;566:383-7.

50. Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 2002;12:540-50.

51. O’Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 2008;320:949-53.

52. Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock. Trends Cell Biol 2014;24:90-9.

53. Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 1972;69:1583-6.

54. Baver SB, Pickard GE, Sollars PJ, Pickard GE. Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci 2008;27:1763-70.

55. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 2002;295:1065-70.

56. Borniger JC, Cisse YM,  Surbhi, Nelson RJ. Reciprocal regulation of circadian rhythms and immune function. Curr Sleep Med Rep 2017;3:93-103.

57. Scheiermann C, Kunisaki Y, Frenette PS. Circadian control of the immune system. Nat Rev Immunol 2013;13:190-8.

58. Cadenas C, van de Sandt L, Edlund K, Lohr M, Hellwig B, et al. Loss of circadian clock gene expression is associated with tumor progression in breast cancer. Cell Cycle Georget Tex 2014;13:3282-91.

59. Stevens RG. Circadian disruption and breast cancer: from melatonin to clock genes. Epidemiol Camb Mass 2005;16:254-8.

60. Van Dycke KCG, Rodenburg W, van Oostrom CTM, van Kerkhof LWM, Pennings JLA, et al. Chronically alternating light cycles increase breast cancer risk in mice. Curr Biol 2015;25:1932-7.

61. Papagiannakopoulos T, Bauer MR, Davidson SM, Heimann M, Subbaraj L, et al. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab 2016;24:324-31.

62. Davidson SM, Papagiannakopoulos T, Olenchock BA, Heyman JE, Keibler MA, et al. Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab 2016;23:517-28.

63. He B, Nohara K, Park N, Park YS, Guillory B, et al. The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metab 2016;23:610-21.

64. Chen J, Chen AY, Huang H, Ye X, Rollyson WD, et al. The flavonoid nobiletin inhibits tumor growth and angiogenesis of ovarian cancers via the Akt pathway. Int J Oncol 2015;46:2629-38.

65. Li N, Zhang Z, Jiang G, Sun H, Yu D. Nobiletin sensitizes colorectal cancer cells to oxaliplatin by PI3K/Akt/MTOR pathway. Front Biosci Landmark Ed 2019;24:303-12.

66. Sp N, Kang DY, Joung YH, Park JH, Kim WS, et al. Nobiletin inhibits angiogenesis by regulating Src/FAK/STAT3-mediated signaling through PXN in ER+ breast cancer cells. Int J Mol Sci 2017;18:E935.

67. Bedrosian TA, Herring KL, Walton JC, Fonken LK, Weil ZM, et al. Evidence for feedback control of pineal melatonin secretion. Neurosci Lett 2013;542:123-5.

68. Borniger JC, Nelson RJ. Photoperiodic regulation of behavior: peromyscus as a model system. Semin Cell Dev Biol 2017;61:82-91.

69. Hardeland R, Poeggeler B. Non-vertebrate melatonin. J Pineal Res 2003;34:233-41.

70. Tan DX, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, et al. The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev 2010;85:607-23.

71. Teclemariam-Mesbah R, Ter Horst GJ, Postema F, Wortel J, Buijs RM. Anatomical demonstration of the suprachiasmatic nucleus-pineal pathway. J Comp Neurol 1999;406:171-82.

72. Carrillo-Vico A, Calvo JR, Abreu P, Lardone PJ, García-Mauriño S, et al. Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. FASEB J 2004;18:537-9.

73. Carrillo-Vico A, Lardone PJ, Álvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero JM. Melatonin: buffering the immune system. Int J Mol Sci 2013;14:8638-83.

74. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, et al. Melatonin--a pleiotropic, orchestrating regulator molecule. Prog Neurobiol 2011;93:350-84.

75. Erren TC, Falaturi P, Morfeld P, Knauth P, Reiter RJ, et al. Shift work and cancer. Dtsch Ärztebl Int 2010;107:657-62.

76. Davis S, Mirick DK, Stevens RG. Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 2001;93:1557-62.

77. James P, Bertrand KA, Hart JE, Schernhammer ES, Tamimi RM, et al. Outdoor light at night and breast cancer incidence in the Nurses’ Health Study II. Environ Health Perspect 2017;125:087010.

78. Johns LE, Jones ME, Schoemaker MJ, McFadden E, Ashworth A, et al. Domestic light at night and breast cancer risk: a prospective analysis of 105 000 UK women in the generations study. Br J Cancer 2018;118:600-6.

79. Blask DE, Brainard GC, Dauchy RT, Hanifin JP, Davidson LK, et al. Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res 2005;65:11174-84.

80. Hill SM, Belancio VP, Dauchy RT, Xiang S, Brimer S, et al. Melatonin: an inhibitor of breast cancer. Endocr Relat Cancer 2015;22:R183-204.

81. Mao L, Dauchy RT, Blask DE, Dauchy EM, Slakey LM, et al. Melatonin suppression of aerobic glycolysis (Warburg effect), survival signalling and metastasis in human leiomyosarcoma. J Pineal Res 2016;60:167-77.

82. Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, et al. Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. Int J Mol Sci 2017;18:E843.

83. Xiang S, Dauchy RT, Hauch A, Mao L, Yuan L, et al. Doxorubicin resistance in breast cancer is driven by light at night induced disruption of the circadian melatonin signal. J Pineal Res 2015;59:60-9.

84. Teunis MA, Kavelaars A, Voest E, Bakker JM, Ellenbroek BA, et al. Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system. FASEB J 2002;16:1465-7.

85. Peters MAM, Walenkamp AME, Kema IP, Meijer C, de Vries EGE, et al. Dopamine and serotonin regulate tumor behavior by affecting angiogenesis. Drug Resist Updat 2014;17:96-104.

86. Ben-Shaanan TL, Azulay-Debby H, Dubovik T, Starosvetsky E, Korin B, et al. Activation of the reward system boosts innate and adaptive immunity. Nat Med 2016;22:940-4.

87. Ben-Shaanan TL, Schiller M, Azulay-Debby H, Korin B, Boshnak N, et al. Modulation of anti-tumor immunity by the brain’s reward system. Nat Commun 2018;9:2723.

88. Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci Lond Engl. 1979; 1998;94:557-72.

89. Sklar LS, Anisman H. Stress and coping factors influence tumor growth. Science 1979;205:513-5.

90. Sklar LS, Anisman H. Social stress influences tumor growth. Psychosom Med 1980;42:347-65.

91. Flint TR, Janowitz T, Connell CM, Roberts EW, Denton AE, et al. Tumor-induced IL-6 reprograms host metabolism to suppress anti-tumor immunity. Cell Metab 2016;24:672-84.

92. Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 2006;4:163-73.

93. Sood AK, Bhatty R, Kamat AA, Landen CN, Han L, et al. Stress hormone-mediated invasion of ovarian cancer cells. Clin Cancer Res 2006;12:369-75.

94. Shaashua L, Shabat-Simon M, Haldar R, Matzner P, Zmora O, et al. Perioperative COX-2 and β-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial. Clin Cancer Res 2017;23:4651-61.

95. Heiden MGV, Cantley LC, Thompson CB. Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029-33.

96. Warburg O. On the origin of cancer cells. Science 1956;123:309-14.

97. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol 1927;8:519-30.

98. Bharadwaj S, Venkatraghavan L, Mariappan R, Ebinu J, Meng Y, et al. Serum lactate as a potential biomarker of non-glial brain tumors. J Clin Neurosci 2015;22:1625-7.

99. Ezeoke CC, Morley JE. Pathophysiology of anorexia in the cancer cachexia syndrome. J Cachexia Sarcopenia Muscle 2015;6:287-302.

100. Mariappan R, Venkatraghavan L, Vertanian A, Agnihotri S, Cynthia S, et al. Serum lactate as a potential biomarker of malignancy in primary adult brain tumours. J Clin Neurosci 2015;22:144-8.

101. Zhou L, Xie Z, Shao Z, Chen W, Xie H, et al. Modeling the relationship between baseline lactate dehydrogenase and prognosis in patients with extensive-disease small cell lung cancer: a retrospective cohort study. J Thorac Dis 2018;10:1043-9.

102. Cortes-Campos C, Elizondo R, Carril C, Martínez F, Boric K, et al. MCT2 expression and lactate influx in anorexigenic and orexigenic neurons of the arcuate nucleus. PLoS One 2013;8:e62532.

103. Cha SH, Lane MD. Central lactate metabolism suppresses food intake via the hypothalamic AMP kinase/malonyl-CoA signaling pathway. Biochem Biophys Res Commun 2009;386:212-6.

104. Chance WT, Dayal R, Friend LA, James JH. Elevated blood lactate is not a primary cause of anorexia in tumor-bearing rats. Nutr Cancer 2004;48:174-81.

105. Campos CA, Bowen AJ, Schwartz MW, Palmiter RD. Parabrachial CGRP neurons control meal termination. Cell Metab 2016;23:811-20.

106. Carter ME, Soden ME, Zweifel LS, Palmiter RD. Genetic identification of a neural circuit that suppresses appetite. Nature 2013;503:111-4.

107. Roman CW, Derkach VA, Palmiter RD. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat Commun 2016;7:11905.

108. Han S, Soleiman MT, Soden ME, Zweifel LS, Palmiter RD. Elucidating an affective pain circuit that creates a threat memory. Cell 2015;162:363-74.

109. Campos CA, Bowen AJ, Han S, Wisse BE, Palmiter RD, et al. Cancer-induced anorexia and malaise are mediated by CGRP neurons in the parabrachial nucleus. Nat Neurosci 2017;20:934-42.

110. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014;156:84-96.

111. Routy B, Chatelier EL, Derosa L, Duong CPM, Alou MT, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018;359:91-7.

112. Lakritz JR, Poutahidis T, Mirabal S, Varian BJ, Levkovich T, et al. Gut bacteria require neutrophils to promote mammary tumorigenesis. Oncotarget 2015;6:9387-96.

113. Levi F, Schibler U. Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 2007;47:593-628.

114. Mormont MC, Levi F. Cancer chronotherapy: principles, applications, and perspectives. Cancer 2003;97:155-69.

115. Borniger JC, Walker WH II, Gaudier-Diaz MM, Stegman CJ, Zhang N, et al. Time-of-day dictates transcriptional inflammatory responses to cytotoxic chemotherapy. Sci Rep 2017;7:41220.

116. Dycke KCGV, Nijman RM, Wackers PFK, Jonker MJ, Rodenburg W, et al. A day and night difference in the response of the hepatic transcriptome to cyclophosphamide treatment. Arch Toxicol 2015;89:221-31.

117. Lipp A, Tank J, Trottenberg T, Kupsch A, Arnold G, et al. Sympathetic activation due to deep brain stimulation in the region of the STN. Neurology 2005;65:774-5.

118. Parsons TD, Rogers SA, Braaten AJ, Woods SP, Tröster AI. Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a meta-analysis. Lancet Neurol 2006;5:578-88.

119. Bower JE, Crosswell AD, Stanton AL, Crespi CM, Winston D, et al. Mindfulness meditation for younger breast cancer survivors: a randomized controlled trial. Cancer 2015;121:1231-40.

120. Palesh OG, Roscoe JA, Mustian KM, Roth T, Savard J, et al. Prevalence, demographics, and psychological associations of sleep disruption in patients with cancer: university of rochester cancer center-community clinical oncology program. J Clin Oncol 2010;28:292-8.

121. Ancoli-Israel S, Liu L, Marler MR, Parker BA, Jones V, et al. Fatigue, sleep, and circadian rhythms prior to chemotherapy for breast cancer. Support Care Cancer 2006;14:201-9.

122. Moore M, Packer M, Innominato PF, Koopman C, Kesler S, et al. Sleep, circadian disruption and neurocognition in breast cancer (BC) patients undergoing chemotherapy. J Clin Oncol 2016;34:10072.

123. Zhu Y, Brown HN, Zhang Y, Stevens RG, Zheng T. Period3 structural variation: a circadian biomarker associated with breast cancer in young women. Cancer Epidemiol Prev Biomark 2005;14:268-70.

124. Dedert E, Lush E, Chagpar A, Dhabhar FS, Segerstrom SC, et al. Stress, coping, and circadian disruption among women awaiting breast cancer surgery. Ann Behav Med 2012;44:10-20.

125. Pereira J, Hanson J, Bruera E. The frequency and clinical course of cognitive impairment in patients with terminal cancer. Cancer 1997;79:835-42.

126. Hutchinson AD, Hosking JR, Kichenadasse G, Mattiske JK, Wilson C. Objective and subjective cognitive impairment following chemotherapy for cancer: a systematic review. Cancer Treat Rev 2012;38:926-34.

127. Von Ah D, Habermann B, Carpenter JS, Schneider BL. Impact of perceived cognitive impairment in breast cancer survivors. Eur J Oncol Nurs 2013;17:236-41.

128. Jenkins V, Shilling V, Deutsch G, Bloomfield D, Morris R, et al. A 3-year prospective study of the effects of adjuvant treatments on cognition in women with early stage breast cancer. Br J Cancer 2006;94:828-34.

129. Villarreal-Garza C, Shaw-Dulin R, Lara-Medina F, Bacon L, Rivera D, et al. Impact of diabetes and hyperglycemia on survival in advanced breast cancer patients. J Diabetes Res 2012;2012:e732027.

130. Larsson SC, Mantzoros CS, Wolk A. Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer 2007;121:856-62.

131. Schoemaker MJ, Nichols HB, Wright LB, Brook MN, Jones ME, et al. Association of body mass index and age with subsequent breast cancer risk in premenopausal women. JAMA Oncol 2018;4:e181771.

132. Muti P, Quattrin T, Grant BJB, Krogh V, Micheli A, et al. Fasting glucose is a risk factor for breast cancer: a prospective study. Cancer epidemiol prev biomark 2002;11:1361-8.

133. Xuan C, Shamonki JM, Chung A, DiNome ML, Chung M, et al. Microbial dysbiosis is associated with human breast cancer. PLoS One 2014;9:e83744.

134. Goedert JJ, Jones G, Hua X, Xu X, Yu G, et al. Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: a population-based case-control pilot study. J Natl Cancer Inst 2015;107:djv147.

135. Luu TH, Michel C, Bard JM, Dravet F, Nazih H, et al. Intestinal proportion of blautia sp. is associated with clinical stage and histoprognostic grade in patients with early-stage breast cancer. Nutr Cancer 2017;69:267-75.

136. Minelli EB, Beghini AM, Vesentini S, Marchiori L, Nardo G, et al. Intestinal microflora as an alternative metabolic source of estrogens in women with uterine leiomyoma and breast cancer. Ann N Y Acad Sci 1990;595:473-9.

137. Pierce BL, Ballard-Barbash R, Bernstein L, Baumgartner RN, Neuhouser ML, et al. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J Clin Oncol 2009;27:3437-44.

138. Murri AMA, Bartlett JMS, Canney PA, Doughty JC, Wilson C, et al. Evaluation of an inflammation-based prognostic score (GPS) in patients with metastatic breast cancer. Br J Cancer 2006;94:227-30.

139. McMillan DC, Elahi MM, Sattar N, Angerson WJ, Johnstone J, et al. Measurement of the systemic inflammatory response predicts cancer-specific and non-cancer survival in patients with cancer. Nutr Cancer 2001;41:64-9.

140. Iyengar NM, Zhou XK, Gucalp A, Morris PG, Howe LR, et al. Systemic correlates of white adipose tissue inflammation in early-stage breast cancer. Clin Cancer Res 2016;22:2283-9.

141. Pyter LM, Pineros V, Galang JA, McClintock MK, Prendergast BJ. Peripheral tumors induce depressive-like behaviors and cytokine production and alter hypothalamic-pituitary-adrenal axis regulation. Proc Natl Acad Sci U S A 2009;106:9069-74.

142. Norden DM, Devine R, Bicer S, Jing R, Reiser PJ, et al. Fluoxetine prevents the development of depressive-like behavior in a mouse model of cancer related fatigue. Physiol Behav 2015;140:230-5.

143. Norden DM, Bicer S, Clark Y, Jing R, Henry CJ, et al. Tumor growth increases neuroinflammation, fatigue and depressive-like behavior prior to alterations in muscle function. Brain Behav Immun 2015;43:76-85.

144. Grossberg AJ, Zhu X, Leinninger GM, Levasseur PR, Braun TP, et al. Inflammation-induced lethargy is mediated by suppression of orexin neuron activity. J Neurosci 2011;31:11376-86.

145. Huan H, Wen X, Chen X, Wu L, Wu L, et al. Sympathetic nervous system promotes hepatocarcinogenesis by modulating inflammation through activation of alpha1-adrenergic receptors of Kupffer cells. Brain Behav Immun 2017;59:118-34.

146. Basu S, Sarkar C, Chakroborty D, Nagy J, Mitra RB, et al. Ablation of peripheral dopaminergic nerves stimulates malignant tumor growth by inducing vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis. Cancer Res 2004;64:5551-5.

147. Filipski E, King VM, Li X, Granda TG, Mormont MC, et al. Disruption of circadian coordination accelerates malignant growth in mice. Pathol Biol (Paris) 2003;51:216-9.

148. Khalyfa A, Almendros I, Gileles-Hillel A, Akbarpour M, Trzepizur W, et al. Circulating exosomes potentiate tumor malignant properties in a mouse model of chronic sleep fragmentation. Oncotarget 2016;7:54676-90.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/