Volume
Volume 4, Issue 3 (September, 2024) – 16 articles
Cover Picture: Osteochondral injuries represent prevalent clinical conditions with profound implications for functional impairment and diminished quality of life. Despite the considerable potential of tissue engineering in osteochondral repair, substantial strides in clinical implementation remain elusive. Biomimetic materials, designed to emulate natural cartilage, offer a stabilized structure and microenvironment capable of accommodating the diverse properties inherent in different cartilage regions. Smart materials, endowed with the ability to deliver drugs, metal ions, and growth factors contingent on the disease progression, exert precise control over the microenvironment and cellular epigenetic behaviors. This review scrutinizes the nuanced characteristics of cartilage in both physiological and pathological states. Subsequently, a succinct overview of recent applications of biomaterials with bionic and smart attributes in osteochondral regeneration and repair is provided. Finally, we propose our perspectives on the application of biomimetic-smart materials in osteochondral regeneration and repair, emphasizing their potential clinical translation.
view this paper