Volume

Volume 5, Issue 8 (2025) – 20 articles

Cover Picture:

Mg3Sb2-based n-type Zintl compounds have attracted greater attention for their superior thermoelectric performance, making them a potential candidate for medium-temperature (< 900 K) applications. Herein, this work verifies the p-type Mg1.8Zn1.2Sb2 solid-solution and defect engineering could be the key mechanism to reduce the lattice thermal conductivity (κL) for improving the thermoelectric performance. The carrier and phonon transport properties were studied by adding heavy element Ag at Mg-sites of Mg1.8Zn1.2Sb2 solid-solution. As a result, the Ag0.03Mg1.77Zn1.2Sb2 sample simultaneously obtained the maximum power factor of 456 μW/mK2 via band convergence and defect engineering, which led to reduced thermal conductivity of 0.56 W/mK at 753 K by the strengthening of multiscale phonon scattering. In addition, optimized carrier density and thermal conductivity resulting in a maximum figure of merit (zT) of 0.5 at 753 K has been obtained for Ag0.03Mg1.77Zn1.2Sb2, which is 285% higher than undoped Mg1.8Zn1.2Sb2. This work demonstrates that heavy element substitution induces band convergence and that defect engineering leads to simultaneous improvement in thermoelectric transport properties of p-type Mg1.8Zn1.2Sb2.

view this paper
Back Cover Picture:

The nickel-rich NMC955 (LiNi0.90Mn0.05Co0.05O2) cathode, with minimal cobalt, is the zenith of LiNixMnyCo1-x-yO2 (NMC) technology but faces structural and thermal stability challenges, losing an average of 15% of its capacity in the first discharge. Here, by selecting appropriate materials and synthesis methods in an all-solid-state battery cell, this challenge is effectively mitigated. A sustainable fabrication of the LiNMC955 positive electrode, excluding poly(vinylidene fluoride) (PVDF) and using styrene-butadiene rubber, demonstrates high retention inall-solid-state cells,without additional interlayers or pressure, at room temperature. To prevent oxygen release, spurious phase formation, and magnetic frustration, simulations determined optimal cycling thresholds and curve morphologies for a Li0/Li6PS5Cl/NMC955 cell by “following the electrons”. This optimized routine ensures prolonged cycle life and performance demonstrated by sheet resistance/Hall effect, Scanning Electron Microscopy/Energy-Dispersive X-ray Spectroscopy (SEM/EDX), Atomic Force Microscopy/Scanning Kelvin Probe Microscopy,Time-of-FlightSecondary Ion Mass Spectrometry, Raman, calorimetry, and electrochemical analyses. The tailored preparation method and cycling regimen enabled the fabrication of a high-performance cathode, achieving capacities exceeding 110-120 mAh.g-1 at C discharging C-rate, after 200 cycles, with a self-recovering component shifting performance to theoretical capacities (192 mAh.g-1), emphasizing the cathode's pivotal role in all-solid-state performance.

view this paper

Review

Article

Actions for 0 selected articles

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/