Review Article | Open Access

4D-printed soft microrobots: manufacturing, materials, actuation and applications

Views:  9
Soft Sci 2026;6:[Accepted].
Author Information
Article Notes
Cite This Article

Abstract

4D printing couples additive manufacturing with stimuli-responsive materials to create soft microrobots that can be programmed to change their shape, properties, and functions in response to external cues. This review synthesizes the core blueprint for 4D-printed soft microrobots, encompassing printing technologies, smart materials, and stimulus modalities. We explore how these elements collectively design locomotion, manipulation, and sensing at the microscale, and investigate application frontiers including targeted drug delivery, tissue engineering, stents, sensing, and other applications. Despite rapid progress, key obstacles remain, such as resolution-throughput-multimaterial trade-offs, interlayer adhesion, long-term fidelity, limited force density, biocompatibility, near-body-temperature triggers, and closed-loop imaging and navigation. Our conclusion is that 4D printing provides a unifying platform for adaptive, reconfigurable soft microrobots, and coordinated advances in materials, manufacturing, modeling, and regulation are essential for unlocking reliable clinical and industry-relevant systems.

Keywords

4D printing, soft microrobots, fabrication strategies, intelligent materials, stimuli, applications

Cite This Article

Ren Z, Fan X, Xie H, Sun M. 4D-printed soft microrobots: manufacturing, materials, actuation and applications. Soft Sci 2026;6:[Accept]. http://dx.doi.org/10.20517/ss.2025.110

Copyright

...
© The Author(s) 2026. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Cite This Article 0 clicks
Share This Article
Scan the QR code for reading!
See Updates
Hot Topics
Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/