REFERENCES

1. Potrč, S.; Nemet, A.; Čuček, L.; Varbanov, P. S.; Kravanja, Z. Synthesis of a regenerative energy system - beyond carbon emissions neutrality. Renew. Sustain. Energy. Rev. 2022, 169, 112924.

2. Huang, J.; Hu, B.; Meng, J.; et al. Highly efficient sustainable strategies toward carbon-neutral energy production. Energy. Environ. Sci. 2024, 17, 1007-45.

3. Bui, T.; Tseng, J.; Tsai, F. M.; Ali, M. H.; Lim, M. K.; Tseng, M. Energy security challenges and opportunities in the carbon neutrality context: a hierarchical model through systematic data-driven analysis. Renew. Sustain. Energy. Rev. 2023, 187, 113710.

4. Zhao, N.; You, F. Can renewable generation, energy storage and energy efficient technologies enable carbon neutral energy transition? Appl. Energy. 2020, 279, 115889.

5. Zhang, Z.; Li, X.; Yin, J.; et al. Emerging hydrovoltaic technology. Nat. Nanotechnol. 2018, 13, 1109-19.

6. Jiao, S.; Li, Y.; Li, J.; et al. Water-enabled electricity generation on film structures: from materials to applications. Renew. Sustain. Energy. Rev. 2024, 199, 114461.

7. Khare, V.; Nema, S.; Baredar, P. Solar–wind hybrid renewable energy system: a review. Renew. Sustain. Energy. Rev. 2016, 58, 23-33.

8. Simshauser, P. Competition vs. coordination: optimising wind, solar and batteries in renewable energy zones. Energy. Econ. 2025, 143, 108279.

9. Rahman, A.; Farrok, O.; Haque, M. M. Environmental impact of renewable energy source based electrical power plants: solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy. Rev. 2022, 161, 112279.

10. Hussain, A.; Arif, S. M.; Aslam, M. Emerging renewable and sustainable energy technologies: state of the art. Renew. Sustain. Energy. Rev. 2017, 71, 12-28.

11. Service, R. F. ‘Hydrovoltaics’ tap energy from ubiquitous moisture. Science 2024, 384, 16.

12. Zan, G.; Li, S.; Zhao, K.; et al. Emerging bioinspired hydrovoltaic electricity generators. Energy. Environ. Sci. 2025, 18, 53-96.

13. Lim, H.; Kim, M. S.; Cho, Y.; et al. Hydrovoltaic electricity generator with hygroscopic materials: a review and new perspective. Adv. Mater. 2024, 36, e2301080.

14. Wang, J.; Cao, X.; Cui, X.; et al. Recent advances of green electricity generation: potential in solar interfacial evaporation system. Adv. Mater. 2024, 36, e2311151.

15. Fang, S.; Chu, W.; Tan, J.; Guo, W. The mechanism for solar irradiation enhanced evaporation and electricity generation. Nano. Energy. 2022, 101, 107605.

16. Zheng, C.; Chu, W.; Fang, S.; Tan, J.; Wang, X.; Guo, W. Materials for evaporation‐driven hydrovoltaic technology. Interdiscip. Mater. 2022, 1, 449-70.

17. Tan, J.; Wang, X.; Chu, W.; et al. Harvesting energy from atmospheric water: grand challenges in continuous electricity generation. Adv. Mater. 2024, 36, e2211165.

18. Xu, J.; Wang, P.; Bai, Z.; et al. Sustainable moisture energy. Nat. Rev. Mater. 2024, 9, 722-37.

19. Xu, T.; Ding, X.; Cheng, H.; Han, G.; Qu, L. Moisture-enabled electricity from hygroscopic materials: a new type of clean energy. Adv. Mater. 2024, 36, e2209661.

20. Cheng, T.; Shao, J.; Wang, Z. L. Triboelectric nanogenerators. Nat. Rev. Methods. Primers. 2023, 3, 230.

21. Song, Y.; Wang, N.; Wang, Y.; Zhang, R.; Olin, H.; Yang, Y. Direct current triboelectric nanogenerators. Adv. Energy. Mater. 2020, 10, 2002756.

22. Ayachi, S.; He, X.; Yoon, H. J. Solar thermoelectricity for power generation. Adv. Energy. Mater. 2023, 13, 2300937.

23. Lin, J.; Zhang, Z.; Lin, X.; et al. All wood‐based water evaporation‐induced electricity generator. Adv. Funct. Mater. 2024, 34, 2314231.

24. Onggowarsito, C.; Mao, S.; Zhang, X. S.; Feng, A.; Xu, H.; Fu, Q. Updated perspective on solar steam generation application. Energy. Environ. Sci. 2024, 17, 2088-99.

25. Baburaj, A.; Naveen Kumar, S.; Aliyana, A. K.; Banakar, M.; Bairagi, S.; Stylios, G. Factors affecting the performance of flexible triboelectric nanogenerators (F-TENGs) and their sensing capabilities: a comprehensive review. Nano. Energy. 2023, 118, 108983.

26. Ye, Z.; Liu, T.; Du, G.; et al. Bioinspired superhydrophobic triboelectric materials for energy harvesting. Adv. Funct. Mater. 2025, 35, 2412545.

27. Yu, Y.; Gao, Q.; Zhang, X.; et al. Contact-sliding-separation mode triboelectric nanogenerator. Energy. Environ. Sci. 2023, 16, 3932-41.

28. Shrestha, K.; Pradhan, G. B.; Asaduzzaman, M.; et al. A breathable, reliable, and flexible siloxene incorporated porous SEBS‐based triboelectric nanogenerator for human–machine interactions. Adv. Energy. Mater. 2024, 14, 2302471.

29. Wu, X.; Lu, Y.; Ren, X.; et al. Interfacial solar evaporation: from fundamental research to applications. Adv. Mater. 2024, 36, e2313090.

30. Liu, X.; Gao, H.; Sun, L.; Yao, J. Generic air-gen effect in nanoporous materials for sustainable energy harvesting from air humidity. Adv. Mater. 2024, 36, e2300748.

31. Chen, J.; Zhang, X.; Cheng, M.; et al. A self-sustained moist-electric generator with enhanced energy density and longevity through a bilayer approach. Mater. Horiz. 2025, 12, 2309-18.

32. Zang, S.; Chen, J.; Yamauchi, Y.; et al. Moisture power generation: from material selection to device structure optimization. ACS. Nano. 2024, 18, 19912-30.

33. Yu, F.; Wang, L.; Yang, X.; et al. Moisture-electric generators working in subzero environments based on laser-engraved hygroscopic hydrogel arrays. ACS. Nano. 2025, 19, 3807-17.

34. Chen, Y.; Ye, C.; He, J.; Guo, R.; Qu, L.; Tang, S. Achieving persistent and ultra-high voltage output through an arid-adapted plant-inspired high-performance moisture-electric generator. Energy. Environ. Sci. 2025, 18, 6063-75.

35. Wen, X.; Sun, Z.; Cho, Y.; et al. Climate‐adaptive high‐performance moisture‐induced electric generator utilizing electric double‐layer gradient. Adv. Funct. Mater. 2025, 35, e06700.

36. Maity, D.; Fussenegger, M. An efficient ambient-moisture-driven wearable electrical power generator. Adv. Sci. 2023, 10, e2300750.

37. Tang, W.; Chen, B. D.; Wang, Z. L. Recent progress in power generation from water/liquid droplet interaction with solid surfaces. Adv. Funct. Mater. 2019, 29, 1901069.

38. Huang, L.; Zhang, Y.; Song, X.; Li, D.; Chen, X.; Yuan, Q. A moist-electric generator based on oxidized and aminated regenerated cellulose. Nano. Energy. 2023, 118, 108973.

39. Lu, J.; Xu, B.; Huang, J.; Liu, X.; Fu, H. Charge transfer and ion occupation induced ultra‐durable and all‐weather energy generation from ambient air for over 200 days. Adv. Funct. Mater. 2024, 34, 2406901.

40. Zhu, R.; Zhu, Y.; Hu, L.; et al. Lab free protein-based moisture electric generators with a high electric output. Energy. Environ. Sci. 2023, 16, 2338-45.

41. Cheng, W.; Xu, C.; Zhang, Q.; et al. Ion concentration gradient induced efficient ion migration in hydrogen-bonded organic frameworks for high-performance, self-powered humidity sensing. Small 2025, 21, e2412497.

42. Park, J.; Chang, S.; Shin, J.; et al. Bio‐physicochemical dual energy harvesting fabrics for self‐sustainable smart electronic suits. Adv. Energy. Mater. 2023, 13, 2300530.

43. Li, Y.; Tian, S.; Chen, X.; et al. A high-current and tunable moisture-enabled electric generator for wireless wearable electronics. J. Mater. Chem. A. 2024, 12, 33039-52.

44. Sun, S.; Li, H.; Zhang, M.; et al. A multifunctional asymmetric fabric for sustained electricity generation from multiple sources and simultaneous solar steam generation. Small 2023, 19, e2303716.

45. Sun, Z.; Wen, X.; Wang, L.; et al. Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2022, 2, 32-46.

46. Yan, H.; Liu, Z.; Qi, R. A review of humidity gradient-based power generator: devices, materials and mechanisms. Nano. Energy. 2022, 101, 107591.

47. Li, Q.; Qin, Y.; Cheng, D.; et al. Moist‐electric generator with efficient output and scalable integration based on carbonized polymer dot and liquid metal active electrode. Adv. Funct. Mater. 2023, 33, 2211013.

48. Chen, F.; Zhang, S.; Guan, P.; et al. High-performance flexible graphene oxide-based moisture-enabled nanogenerator via multilayer heterojunction engineering and power management system. Small 2024, 20, e2304572.

49. Hu, Y.; Yang, W.; Wei, W.; et al. Phyto-inspired sustainable and high-performance fabric generators via moisture absorption-evaporation cycles. Sci. Adv. 2024, 10, eadk4620.

50. Zan, G.; Jiang, W.; Kim, H.; et al. A core-shell fiber moisture-driven electric generator enabled by synergetic complex coacervation and built-in potential. Nat. Commun. 2024, 15, 10056.

51. Zheng, H.; Zhou, A.; Li, Y.; et al. A sandwich-like flexible nanofiber device boosts moisture induced electricity generation for power supply and multiple sensing applications. Nano. Energy. 2023, 113, 108529.

52. Shao, C.; Gao, J.; Xu, T.; et al. Wearable fiberform hygroelectric generator. Nano. Energy. 2018, 53, 698-705.

53. Cheng, Y.; Zhu, T.; He, Q.; et al. Hydrogel‐based moisture electric generator with high output performance induced by proton hopping. Adv. Funct. Mater. 2025, 35, 2500186.

54. Shen, D.; Li, F.; Zhao, J.; et al. Ionic hydrogel-based moisture electric generators for underwater electronics. Adv. Sci. 2024, 11, e2408954.

55. Cheng, Y.; Yang, C.; Zhu, T.; Wu, C.; Huang, J.; Lai, Y. Light‐assisted polyproton dissociated PAAm‐PA hydrogel‐based moisture‐driven electricity generator with a broad operating range. Adv. Funct. Mater. 2025, 35, 2415533.

56. Yu, R.; Wu, L.; Yang, Z.; et al. Dynamic liquid metal-microfiber interlocking enables highly conductive and strain-insensitive metastructured fibers for wearable electronics. Adv. Mater. 2025, 37, e2415268.

57. Li, S.; Zhang, Y.; Liang, X.; et al. Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nat. Commun. 2022, 13, 5416.

58. Song, Y.; Shu, C.; Song, Z.; et al. Self-powered health monitoring with ultrafast response and recovery enabled by nanostructured silicon moisture-electric generator. Chem. Eng. J. 2023, 468, 143797.

59. Liu, Y.; Li, Z.; Yang, X.; et al. Multifunctional power generators beyond moisture limitation. Adv. Funct. Mater. 2024, 34, 2407204.

60. Liu, C.; Wang, S.; Wang, X.; et al. Hydrovoltaic energy harvesting from moisture flow using an ionic polymer–hydrogel–carbon composite. Energy. Environ. Sci. 2022, 15, 2489-98.

61. Han, M.; Shen, W.; Corriou, J. Polydopamine-modified MXene/cellulose nanofibers composite film for self-powered humidity sensing and humidity actuating. Nano. Energy. 2024, 123, 109445.

62. Liang, J.; Wang, Y.; Ma, X.; et al. Directional oxygen defect engineering in black phosphorus aerogel for flexible and stable moisture‐electric generators. Adv. Funct. Mater. 2025, 35, 2418834.

63. Guo, H.; Luo, Q.; Liu, D.; et al. Super moisture-sorbent sponge for sustainable atmospheric water harvesting and power generation. Adv. Mater. 2024, 36, e2414285.

64. Lu, W.; Ong, W. L.; Ho, G. W. Advances in harvesting water and energy from ubiquitous atmospheric moisture. J. Mater. Chem. A. 2023, 11, 12456-81.

65. Wang, X.; Lin, F.; Wang, X.; et al. Hydrovoltaic technology: from mechanism to applications. Chem. Soc. Rev. 2022, 51, 4902-27.

66. Shao, B.; Song, Y.; Song, Z.; et al. Electricity generation from phase transitions between liquid and gaseous water. Adv. Energy. Mater. 2023, 13, 2204091.

67. Yang, L.; Zhang, L.; Sun, D. Energy harvesting technology based on moisture-responsive actuators. J. Mater. Chem. A. 2023, 11, 18530-60.

68. Ge, C.; Xu, D.; Feng, X.; et al. Recent advances in fibrous materials for hydroelectricity generation. Nanomicro. Lett. 2024, 17, 29.

69. Kim, C.; Yang, E.; Karnik, R.; et al. Transition of water transport mechanism in laminar graphene membrane with increasing thickness: influence of strong cohesive interaction among water molecules. Chem. Eng. J. 2025, 505, 158366.

70. Li, X.; Zhang, K.; Nilghaz, A.; Chen, G.; Tian, J. A green and sustainable water evaporation-induced electricity generator with woody biochar. Nano. Energy. 2023, 112, 108491.

71. Han, C.; Bai, Z.; Sun, H.; Mi, L.; Sun, Z. Bioinspired gradient-structured wood interfaces achieving efficient ion diffusion to generate electricity from natural evaporation. J. Mater. Chem. A. 2024, 12, 723-30.

72. Wang, Z.; He, Y.; Wang, C.; et al. A moisture-absorbing cellulose nanofibril-based foam via ambient drying for high-performance dehumidification. Chem. Eng. J. 2024, 486, 150063.

73. Guo, C.; Tang, H.; Wang, P.; et al. Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting. Nat. Commun. 2024, 15, 6100.

74. Zhong, H.; Wang, S.; Wang, Z.; Jiang, J. Asymmetric self-powered cellulose-based aerogel for moisture-electricity generation and humidity sensing. Chem. Eng. J. 2024, 486, 150203.

75. Liu, C.; Wan, T.; Guan, P.; et al. Unveil the triple roles of water molecule on power generation of MXene derived TiO2 based moisture electric generator. Adv. Energy. Mater. 2024, 14, 2400590.

76. Lin, X.; Tao, S.; Mo, J.; et al. Cellulose hydrogel with in-situ confined nanopores for boosting moist-electric conversion. Nat. Commun. 2025, 16, 7527.

77. Li, X.; Wang, Z. L.; Wei, D. Scavenging energy and information through dynamically regulating the electrical double layer. Adv. Funct. Mater. 2024, 34, 2405520.

78. Shen, D.; Duley, W. W.; Peng, P.; et al. Moisture-enabled electricity generation: from physics and materials to self-powered applications. Adv. Mater. 2020, 32, e2003722.

79. Wang, L.; Wang, H.; Wu, C.; et al. Moisture-enabled self-charging and voltage stabilizing supercapacitor. Nat. Commun. 2024, 15, 4929.

80. Huang, Y.; Cheng, H.; Qu, L. Emerging materials for water-enabled electricity generation. ACS. Mater. Lett. 2021, 3, 193-209.

81. Sun, Z.; Feng, L.; Wen, X.; Wang, L.; Qin, X.; Yu, J. Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts. Mater. Horiz. 2021, 8, 2303-9.

82. Huang, Y.; Cheng, H.; Yang, C.; Yao, H.; Li, C.; Qu, L. All-region-applicable, continuous power supply of graphene oxide composite. Energy. Environ. Sci. 2019, 12, 1848-56.

83. Liu, Y.; Du, H.; You, W.; et al. High-output, stretchable, moisture-electric generator enabled by tailored acrylic acid/choline chloride eutectogel. ACS. Appl. Mater. Interfaces. 2025, 17, 61218-28.

84. Yan, H.; Li, L.; Dong, C.; Wu, H.; Qi, R. Uncovering internal water-flux and surface-potential dominance in hydrogel-based moisture-enabled power generation: mechanistic insights and performance enhancement. Mater. Horiz. 2025, 12, 10357-69.

85. Yang, T.; Han, Z.; Su, B.; Lin, X. Hygroscopic-evaporative generator for multiform energy harvesting from environment and food storage. Adv. Mater. 2026, 38, e11885.

86. Xu, T.; Ding, X.; Shao, C.; et al. Electric power generation through the direct interaction of pristine graphene-oxide with water molecules. Small 2018, 14, e1704473.

87. Huang, Y.; Cheng, H.; Yang, C.; et al. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 2018, 9, 4166.

88. Yang, S.; Tao, X.; Chen, W.; et al. Ionic hydrogel for efficient and scalable moisture-electric generation. Adv. Mater. 2022, 34, e2200693.

89. Sun, Z.; Wen, X.; Kim, J.; et al. Moisture‐driven hydrogel power source with asymmetric ion adsorption for flexible electronics. Adv. Funct. Mater. 2026, 36, e18814.

90. Xiao, R.; Zhou, X.; Yang, T.; et al. Biomimetic gradient aerogel fibers for sustainable energy harvesting from human sweat via the hydrovoltaic effect. Nano. Energy. 2025, 136, 110759.

91. Xing, R.; Liu, Y.; Yan, J.; Wang, R.; Zhuang, X.; Yang, G. High-performance, breathable and flame-retardant moist-electric generator based on asymmetrical nanofiber membrane assembly. J. Colloid. Interface. Sci. 2024, 671, 205-15.

92. Chen, P.; He, G.; He, B.; et al. Long-term and high electric output moist-electric generator driven by all electrospun nanofiber-based Janus architecture. J. Mater. Sci. Technol. 2025, 225, 31-9.

93. Ni, K.; Ren, Q.; Zhang, X.; Liu, R. A trilayer nanofluidic ionic diode for high-performance moisture-enabled energy harvesting and ionic logic operations. Adv. Mater. 2026, 38, e13405.

94. Zhao, F.; Cheng, H.; Zhang, Z.; Jiang, L.; Qu, L. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351-7.

95. Cheng, H.; Huang, Y.; Zhao, F.; et al. Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy. Environ. Sci. 2018, 11, 2839-45.

96. Gao, Y.; Cai, X.; Zhao, Y.; et al. Scalable preparation of flexible heterogeneous graphene oxide structures for high-performance wet power generation. J. Mater. Chem. A. 2024, 12, 12216-24.

97. Tang, X.; Jiang, B.; Zhu, Q.; et al. A novel wood-based multifunctional composites incorporating with piezoelectric and moist-electric performance. Nano. Energy. 2024, 130, 110159.

98. Cao, Y. M.; Su, Y.; Zheng, M.; et al. Vertical phase-engineering MoS2 nanosheet-enhanced textiles for efficient moisture-based energy generation. ACS. Nano. 2024, 18, 492-505.

99. He, D.; Yang, Y.; Zhou, Y.; et al. Electricity generation from phase-engineered flexible MoS2 nanosheets under moisture. Nano. Energy. 2021, 81, 105630.

100. Cai, C.; Chen, Y.; Cheng, F.; Wei, Z.; Zhou, W.; Fu, Y. Biomimetic dual absorption-adsorption networked MXene aerogel-pump for integrated water harvesting and power generation system. ACS. Nano. 2024, 18, 4376-87.

101. Wu, Y.; Shao, B.; Song, Z.; et al. A hygroscopic Janus heterojunction for continuous moisture-triggered electricity generators. ACS. Appl. Mater. Interfaces. 2022, 14, 19569-78.

102. Shen, D.; Xiao, M.; Zou, G.; Liu, L.; Duley, W. W.; Zhou, Y. N. Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 2018, 30, e1705925.

103. Yan, H.; Liu, Z.; Qi, R. Development and mechanism investigation of TiO2/Co hydrogel microgenerator utilizing humidity gradient. Energy. Convers. Manag. 2023, 291, 117256.

104. Zhang, Y.; Yang, T.; Shang, K.; et al. Sustainable power generation for at least one month from ambient humidity using unique nanofluidic diode. Nat. Commun. 2022, 13, 3484.

105. Wang, H.; Sun, Y.; He, T.; et al. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat. Nanotechnol. 2021, 16, 811-9.

106. Wu, J.; Zhang, Y.; Pei, D.; et al. A waterborne epoxy vitrimer: enabling moisture-driven actuation, continuous moist-electric generation, and water-assisted degradation. Adv. Sci. 2026, 13, e13579.

107. Pan, X.; Wang, Q.; Jin, L.; Ni, Y.; Rosei, F. Integrated paper-hydrogel structure for spontaneous and ultra-durable eco-friendly electricity generation. Nano. Energy. 2025, 136, 110730.

108. Xu, T.; Ding, X.; Huang, Y.; et al. An efficient polymer moist-electric generator. Energy. Environ. Sci. 2019, 12, 972-8.

109. Yang, S.; Zhang, L.; Mao, J.; et al. Green moisture-electric generator based on supramolecular hydrogel with tens of milliamp electricity toward practical applications. Nat. Commun. 2024, 15, 3329.

110. Zhang, Y.; Guo, S.; Yu, Z. G.; et al. An asymmetric hygroscopic structure for moisture-driven hygro-ionic electricity generation and storage. Adv. Mater. 2022, 34, e2201228.

111. Li, M.; Zong, L.; Yang, W.; et al. Biological nanofibrous generator for electricity harvest from moist air flow. Adv. Funct. Mater. 2019, 29, 1901798.

112. Liao, G.; Sun, E.; Kana, E. B. G.; et al. Renewable hemicellulose-based materials for value-added applications. Carbohydr. Polym. 2024, 341, 122351.

113. You, S.; Chen, M.; Ren, H.; et al. A robust lignin-derived moisture-enabled electric generator with sustained and scalable power output. ACS. Appl. Mater. Interfaces. 2025, 17, 12034-42.

114. Gao, X.; Xu, T.; Shao, C.; et al. Electric power generation using paper materials. J. Mater. Chem. A. 2019, 7, 20574-8.

115. Liu, J.; Huang, L.; He, W.; et al. Moisture-enabled hydrovoltaic power generation with milk protein nanofibrils. Nano. Energy. 2022, 102, 107709.

116. Liu, X.; Gao, H.; Ward, J. E.; et al. Power generation from ambient humidity using protein nanowires. Nature 2020, 578, 550-4.

117. Ren, G.; Wang, Z.; Zhang, B.; et al. A facile and sustainable hygroelectric generator using whole-cell Geobacter sulfurreducens. Nano. Energy. 2021, 89, 106361.

118. Ren, G.; Hu, Q.; Ye, J.; Liu, X.; Zhou, S.; He, Z. Hydrovoltaic effect of microbial films enables highly efficient and sustainable electricity generation from ambient humidity. Chem. Eng. J. 2022, 441, 135921.

119. Ren, G.; Hu, Q.; Ye, J.; Hu, A.; Lü, J.; Zhou, S. All-biobased hydrovoltaic-photovoltaic electricity generators for all-weather energy harvesting. Research 2022, 2022, 9873203.

120. Chen, T.; Zhang, D.; Tian, X.; et al. Highly ordered asymmetric cellulose-based honeycomb membrane for moisture-electricity generation and humidity sensing. Carbohydr. Polym. 2022, 294, 119809.

121. Wang, C.; Duan, P.; Huang, Y.; et al. Micro-meso-macroporous channels finely tailored for highly efficient moisture energy harvesting. Nat. Commun. 2025, 16, 6568.

122. Ying, W.; Huang, Z.; Liu, Z.; et al. High-power hydrogel-based moisture-electric generators. Energy. Environ. Sci. 2025, 18, 9457-67.

123. Zhu, R.; Feng, Z.; Hu, L.; et al. Synergistic effect of hydrophilic layers for moisture-introduced hybrid power generation. Adv. Mater. 2026, 38, e15133.

124. Guo, S.; Patel, S.; Wang, J.; et al. Self-powered green energy-harvesting and sensing interfaces based on hygroscopic gel and water-locking effects. Sci. Adv. 2025, 11, eadw5991.

125. Huang, Z.; Li, C.; Ying, W.; et al. A hydrogel-based moist-electric generator with superior energy output and environmental adaptability. Nano. Energy. 2024, 126, 109673.

126. Mo, J.; Wang, X.; Lin, X.; et al. Sulfated cellulose nanofibrils-based hydrogel moist-electric generator for energy harvesting. Chem. Eng. J. 2024, 491, 152055.

127. Zhang, J.; Zhuang, J.; Lei, L.; Hou, Y. Rapid preparation of a self-adhesive PAA ionic hydrogel using lignin sulfonate–Al3+ composite systems for flexible moisture-electric generators. J. Mater. Chem. A. 2023, 11, 3546-55.

128. Liang, Y.; Zhao, F.; Cheng, Z.; et al. Self-powered wearable graphene fiber for information expression. Nano. Energy. 2017, 32, 329-35.

129. Gao, W.; Liu, F.; Zheng, Y.; et al. Long-lasting and high-power-density yarn-based moisture-enabled electric generator for self-powered electronic textiles. Small 2025, 21, e2409438.

130. Zhang, R.; Wang, H.; Qu, M.; et al. Sodium alginate based energy harvesting fibers: multiscale structure and moist-electrical properties. Chem. Eng. J. 2023, 473, 145325.

131. Zhang, R.; Qu, M.; Wang, H.; et al. Sodium alginate based skin-core fibers with profoundly enhanced moisture-electric generation performance and their multifunctionality. J. Mater. Chem. A. 2023, 11, 3616-24.

132. Zhang, R.; Li, X.; Du, W.; et al. Alginate/multi-wall carbon nanotube fiber-based moist-electric generator with enhanced performance by constructing radial heterogenous structure. Chem. Eng. J. 2024, 496, 153925.

133. Zhang, R.; Li, J.; Yin, Y.; et al. Sodium alginate/carbon nanotube energy harvesting fibers: axial functional group gradient and moist-electric performance. J. Mater. Sci. Technol. 2025, 208, 67-77.

134. Zhou, X.; Zhan, Y.; Zhou, J.; et al. Plant‐inspired high‐performance hydrovoltaic electricity generation in Janus aerogel fibers with gradient nanostructures. Adv. Funct. Mater. 2025, 35, e10747.

135. Sim, H. J.; Gwac, H.; Kim, S. J.; Oh, J.; Choi, C. Soft and elastic hygroelectric fiber for wearable human monitoring textiles. Chem. Eng. J. 2024, 495, 153486.

136. Han, B. B.; Luo, P.; Xue, Y. B.; et al. Hydrophilic 1T-WS2 nanosheet arrays toward conductive textiles for high-efficient and continuous hydroelectric generation and storage. Small 2024, 20, e2308527.

137. Zhu, R.; Liu, T.; Balilonda, A.; Luo, Y.; Ma, K.; Tao, X. Green, safe, durable, printed fabric hygroelectric generators for wearable systems. Adv. Mater. 2025, 37, e2502091.

138. Su, L.; Zhang, C.; Tang, W.; et al. Moist-electric generators using biomass Juncus effusus fibers with 3D microchannels for wearable applications. Chem. Eng. J. 2024, 499, 156106.

139. He, H.; Zhang, J.; Pan, J.; et al. Moisture-enabled electric generators based on electrospinning silk fibroin/poly(ethylene oxide) film impregnated with gradient-structured sericin. ACS. Appl. Energy. Mater. 2024, 7, 2980-8.

140. Yang, L.; Zhang, L.; Sun, D. Harvesting electricity from atmospheric moisture by engineering an organic acid gradient in paper. ACS. Appl. Mater. Interfaces. 2022, 14, 53615-26.

141. He, W.; Wang, H.; Huang, Y.; et al. Textile-based moisture power generator with dual asymmetric structure and high flexibility for wearable applications. Nano. Energy. 2022, 95, 107017.

142. Yang, L.; Zhang, L.; Yong, Y. C.; Sun, D. A direct current self-sustained moisture-electric generator with 1D/2D hierarchical nanostructure for continuous operation of off-grid electronics. ACS. Nano. 2024, 18, 28956-67.

143. Zhang, R.; Zheng, R.; Zheng, Z.; et al. Bacterial cellulose/multi-walled carbon nanotube composite films for moist-electric energy harvesting. Int. J. Biol. Macromol. 2024, 263, 130022.

144. Li, X.; Zhang, R.; Ai, X.; Tang, P.; Wang, H.; Bin, Y. Bacterial cellulose/reduced graphene oxide bilayer films for moist-electric power generation. J. Mater. Chem. A. 2025, 13, 8571-9.

145. Li, Z.; Wang, J.; Dai, L.; et al. Asymmetrically patterned cellulose nanofibers/graphene oxide composite film for humidity sensing and moist-induced electricity generation. ACS. Appl. Mater. Interfaces. 2020, 12, 55205-14.

146. Yan, Z.; Li, N.; Chang, Q.; Xue, C.; Yang, J.; Hu, S. Enhancing moisture-electric power generation through in situ incorporation of carbon dots into polyelectrolyte membrane. Chem. Eng. J. 2023, 467, 143443.

147. Saikia, B.; Dey, M.; Garg, P.; Gogoi, R.; Manik, R.; Raidongia, K. Heterojunction of natural clay minerals and carbon nanotubes as robust moisture electric generator. Chem. Eng. J. 2024, 497, 154840.

148. Zhang, H.; He, N.; Wang, B.; et al. High-performance, highly stretchable, flexible moist-electric generators via molecular engineering of hydrogels. Adv. Mater. 2023, 35, e2300398.

149. He, W.; Li, P.; Wang, H.; et al. Robustly and intrinsically stretchable ionic gel-based moisture-enabled power generator with high human body conformality. ACS. Nano. 2024, 18, 12096-104.

150. Wu, P.; Chen, Y.; Luo, Y.; et al. Hierarchical bilayer polyelectrolyte ion paper conductor for moisture-induced power generation. ACS. Appl. Mater. Interfaces. 2024, 16, 32198-208.

151. Liu, J.; Wang, Y.; Zhou, L.; Yu, Z.; Yuan, Y. Hydrogel-integrated waste activated sludge for reliable moisture-driven electrical power generation under low and fluctuating humidity conditions. Chem. Eng. J. 2025, 513, 162880.

152. Zhou, J.; Ren, Z.; Cui, X.; Liu, X.; Lu, X. Bioinspired interfacial design of robust aramid nanofiber composite films for high‐performance moisture‐electric generators. Adv. Energy. Mater. 2025, 15, 2404840.

153. Huang, Y.; Zhou, K.; Cheng, H.; et al. Three‐dimensional printing of high‐performance moisture power generators. Adv. Funct. Mater. 2024, 34, 2308620.

154. Chen, S.; Chen, S.; Liu, X.; Liu, X.; Zhang, Q.; Gao, G. Liquid-free antibacterial ionic conductive elastomer for moisture-electric generator. Chem. Eng. J. 2025, 515, 163789.

155. Kim, E.; Ma, X.; Zhou, J.; et al. Long‐lasting moisture energy scavenging in dry ambient air empowered by a salt concentration‐gradient cationic hydrogel. Adv. Funct. Mater. 2025, 35, 2419710.

156. Zhu, L.; Li, X.; Huang, Y.; Ishioka, S.; Kasuga, T.; Koga, H. Hygroscopic and moisture-stable cellulose nanofiber aerogel for effective and repeatable moisture-enabled electricity generation. Chem. Eng. J. 2025, 511, 162246.

157. Wang, J.; Wei, Z.; Ren, C.; et al. Ficus aerial root-inspired photothermal hygroscopic cellulose-based aerogel with capillarity-hydrated hydrogen bonds water retention structure for atmospheric water harvesting and power generation. Chem. Eng. J. 2025, 512, 162724.

158. Zhang, X.; Dai, Z.; Chen, J.; et al. Double-gradient-structured composite aerogels for ultra-high-performance moisture energy harvesting. Energy. Environ. Sci. 2023, 16, 3600-11.

159. Zhao, F.; Liang, Y.; Cheng, H.; Jiang, L.; Qu, L. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy. Environ. Sci. 2016, 9, 912-6.

160. Feng, Z.; Wan, T.; Yin, T.; et al. Constructing water-retaining/ion-regulating Bi-layers for highly durable, all-climate, efficient moisture electric generators. Adv. Mater. 2025, 37, e2416008.

161. Shin, E.; Kim, G.; Zhao, K.; et al. Environmentally sustainable moisture energy harvester with chemically networked cellulose nanofiber. Energy. Environ. Sci. 2024, 17, 7165-81.

162. Zhao, K.; Lee, J. W.; Yu, Z. G.; et al. Humidity-tolerant moisture-driven energy generator with MXene aerogel-organohydrogel bilayer. ACS. Nano. 2023, 17, 5472-85.

163. Song, M.; Kim, D.; Lee, H.; Han, H.; Jeon, S. Synergistic effect of a Berlin green framework for highly efficient moisture-electric energy transformation. Energy. Environ. Sci. 2024, 17, 5421-8.

164. Zhao, K.; Li, S.; Zan, G.; et al. Moisture-driven energy generation by vertically structured polymer aerogel on water-collecting gel. Nano. Energy. 2024, 126, 109645.

165. Cao, F.; Sun, J.; Liu, S.; et al. Efficient energy harvesting: high power wearable humidity generators with PAM-LiCl/CMC structure. Nano. Energy. 2025, 134, 110590.

166. Zhang, H.; Qin, L.; Zhou, Y.; Huang, G.; Cai, H.; Sha, J. High-performance and anti-freezing moisture-electric generator combining ion-exchange membrane and ionic hydrogel. Small 2025, 21, e2410609.

167. Liu, R.; Li, H.; Fu, Z.; et al. Weavable composite filament for sustained electricity generation from multiple sources. Chem. Eng. J. 2025, 503, 158410.

168. Sun, Z.; Feng, L.; Xiong, C.; et al. Electrospun nanofiber fabric: an efficient, breathable and wearable moist-electric generator. J. Mater. Chem. A. 2021, 9, 7085-93.

169. Sun, Z.; Wen, X.; Wang, L.; Yu, J.; Qin, X. Capacitor-inspired high-performance and durable moist-electric generator. Energy. Environ. Sci. 2022, 15, 4584-91.

170. Zhang, J.; Hou, Y.; Lei, L.; Hu, S. Moist-electric generators based on electrospun cellulose acetate nanofiber membranes with tree-like structure. J. Membr. Sci. 2022, 662, 120962.

171. Sun, Z.; Wen, X.; Guo, S.; et al. Weavable yarn-shaped moisture-induced electric generator. Nano. Energy. 2023, 116, 108748.

172. Yao, Y.; Lu, X.; Fu, C.; et al. Patterned coating of ionic diode arrays toward flexible moist‐electric generators to power wireless sensor nodes. Adv. Funct. Mater. 2024, 34, 2311465.

173. Liang, Y.; Zhao, F.; Cheng, Z.; et al. Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energy. Environ. Sci. 2018, 11, 1730-5.

174. He, T.; Wang, H.; Lu, B.; et al. Fully printed planar moisture-enabled electric generator arrays for scalable function integration. Joule 2023, 7, 935-51.

175. Huang, G.; Liu, J.; Zhang, H.; Zhang, W.; Deng, Y.; Sha, J. A double-gradient structured hydrogel for an efficient moisture-electric generator. Chem. Eng. J. 2025, 504, 158878.

176. Zhang, R.; Chen, X.; Wan, Z.; et al. High-performance, flexible moist-electric generator for self-powered wearable wireless sensing. Chem. Eng. J. 2024, 502, 157695.

177. Zhao, G.; Li, F.; Guo, L.; et al. Cellulose/ionic hydrogel moisture electric generators with enhanced output and stability. Chem. Eng. J. 2025, 518, 164788.

178. Li, L.; Dong, F.; Miao, P.; et al. High-efficiency moisture energy harvesting at -30 °C via hybrid solute engineering. Energy. Environ. Sci. 2025, 18, 2985-94.

179. Zhang, Y.; Yu, Z.; Qu, H.; et al. Self-sustained programmable hygroelectronic interfaces for humidity-regulated hierarchical information encryption and display. Adv. Mater. 2024, 36, e2208081.

180. Li, F.; Zhao, J.; Li, B.; et al. Water-triboelectrification-complemented moisture electric generator. ACS. Nano. 2024, 18, 30658-67.

181. Kim, G.; Lee, J. W.; Zhao, K.; et al. A deformable complementary moisture and tribo energy harvester. Energy. Environ. Sci. 2024, 17, 134-48.

182. Sohn, S.; Choi, G.; On, B.; Park, I. Synergistic coupling of tribovoltaic and moisture‐enabled electricity generation in layered‐double hydroxides. Adv. Energy. Mater. 2024, 14, 2304206.

183. Tang, S.; Ma, M.; Zhang, X.; et al. Covalent cross‐links enable the formation of ambient‐dried biomass aerogels through the activation of a triazine derivative for energy storage and generation. Adv. Funct. Mater. 2022, 32, 2205417.

184. Guo, S.; Zhang, Y.; Yu, Z.; et al. Leaf-based energy harvesting and storage utilizing hygroscopic iron hydrogel for continuous power generation. Nat. Commun. 2025, 16, 5267.

185. Yang, C.; Wang, H.; Yang, J.; et al. A machine-learning-enhanced simultaneous and multimodal sensor based on moist-electric powered graphene oxide. Adv. Mater. 2022, 34, e2205249.

186. Liu, G.; An, Z.; Lu, Y.; et al. High-output moisture-enabled electricity generator for fully self-powered wearable physical and biochemical monitoring. Nano. Energy. 2024, 119, 109098.

187. Zhang, X.; Wang, M.; Wu, Y.; et al. Biomimetic aerogel for moisture‐induced energy harvesting and self‐powered electronic skin. Adv. Funct. Mater. 2023, 33, 2210027.

188. Lal, S.; Re, G. L.; Hwang, B. Surface charge-enhanced cellulose nanocrystal/polyvinyl alcohol/carbon nanotube composite for high-efficiency hydrovoltaic power generation and durable wearable health monitoring sensor. Nano. Energy. 2025, 142, 111269.

189. Zhang, R.; Chen, X.; Wan, Z.; Yin, M.; Ma, L.; Xiao, X. Moisture electricity generation based self-powered humidity sensor for smart agriculture. Mater. Today. Chem. 2024, 42, 102416.

190. Lv, D.; Zheng, S.; Cao, C.; et al. Defect-enhanced selective ion transport in an ionic nanocomposite for efficient energy harvesting from moisture. Energy. Environ. Sci. 2022, 15, 2601-9.

191. Ming, Z.; Zhang, J.; Li, W.; et al. Photothermal-responsive aerogel-hydrogel binary system for efficient water purification and all-weather hydrovoltaic generation. Adv. Mater. 2025, 37, e2501809.

192. Zhang, M.; Duan, Z.; Yuan, Z.; Jiang, Y.; Tai, H. Observing mixed chemical reactions at the positive electrode in the high-performance self-powered electrochemical humidity sensor. ACS. Nano. 2024, 18, 34158-70.

193. Cao, Y.; Tan, J.; Sun, T.; et al. Gas-liquid two-phase bubble flow spinning for hydrovoltaic flexible electronics. Nat. Commun. 2025, 16, 4397.

194. Xin, J.; Gao, L.; Zhang, W.; et al. A thermogalvanic cell dressing for smart wound monitoring and accelerated healing. Nat. Biomed. Eng. 2026, 10, 80-93.

195. Yan, R.; Zhang, X.; Wang, H.; et al. Autonomous, moisture-driven flexible electrogenerative dressing for enhanced wound healing. Adv. Mater. 2025, 37, e2418074.

196. Shi, J.; Kuang, M.; Liu, X.; et al. Humidity-gated moisture-electric therapy via dual-modal eelectrostimulation for adaptive bioelectronic interventions. Adv. Mater. 2026, 38, e09865.

197. Li, N.; He, J. Ambient moisture as energy source: MEG technology toward self-powered wearable sensors. Small 2025, 21, e07958.

198. Li, P.; Hu, Y.; Wang, H.; He, T.; Cheng, H.; Qu, L. Interfacial ion-electron conversion enhanced moisture energy harvester. Nat. Commun. 2025, 16, 6600.

199. Son, W.; Kim, J.; Kim, J. H.; et al. Stretchable micro-wrinkled carbon nanotube-assembled skin-adhesive patches with suction-cup patterns for human breath-derived moisture energy harvesting. ACS. Nano. 2025, 19, 20729-43.

200. Li, X.; Lv, D.; Ai, L.; et al. Superstrong ionogel enabled by coacervation-induced nanofibril assembly for sustainable moisture energy harvesting. ACS. Nano. 2024, 18, 12970-80.

201. Zhang, Y.; Wang, P.; Shi, Q.; et al. Advances in wet electrospinning: rich morphology and promising applications. Adv. Fiber. Mater. 2025, 7, 374-413.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/