REFERENCES

1. Bartolozzi, C.; Indiveri, G.; Donati, E. Author Correction: Embodied neuromorphic intelligence. Nat. Commun. 2022, 13, 1415.

2. Zhao, Z.; Wu, Q.; Wang, J.; Zhang, B.; Zhong, C.; Zhilenkov, A. A. Exploring embodied intelligence in soft robotics: a review. Biomimetics 2024, 9, 248.

3. Mon-Williams, R.; Li, G.; Long, R.; Du, W.; Lucas, C. G. Embodied large language models enable robots to complete complex tasks in unpredictable environments. Nat. Mach. Intell. 2025, 7, 592-601.

4. Khan, A. T.; Li, S.; Cao, X. Human guided cooperative robotic agents in smart home using beetle antennae search. Sci. China. Inf. Sci. 2022, 65, 122204.

5. Eirale, A.; Martini, M.; Tagliavini, L.; Gandini, D.; Chiaberge, M.; Quaglia, G. Marvin: an innovative omni-directional robotic assistant for domestic environments. Sensors 2022, 22, 5261.

6. Gentile, C.; Lunghi, G.; Buonocore, L. R.; et al. Manipulation tasks in hazardous environments using a teleoperated robot: a case study at CERN. Sensors 2023, 23, 1979.

7. Szczurek, K. A.; Prades, R. M.; Matheson, E.; Rodriguez-Nogueira, J.; Di Castro, M. Multimodal multi-user mixed reality human–robot interface for remote operations in hazardous environments. IEEE. Access. 2023, 11, 17305-33.

8. Soori, M.; Dastres, R.; Arezoo, B.; Karimi Ghaleh Jough, F. Intelligent robotic systems in Industry 4.0: a review. J. Adv. Manuf. Sci. Technol. 2024, 4, 2024007.

9. Arents, J.; Greitans, M. Smart industrial robot control trends, challenges and opportunities within manufacturing. Appl. Sci. 2022, 12, 937.

10. Hou, C.; Gao, H.; Yang, X.; et al. A piezoresistive-based 3-axial MEMS tactile sensor and integrated surgical forceps for gastrointestinal endoscopic minimally invasive surgery. Microsyst. Nanoeng. 2024, 10, 141.

11. Hou, C.; Wang, K.; Wang, F.; et al. A highly integrated 3D MEMS force sensing module with variable sensitivity for robotic-assisted minimally invasive surgery. Adv. Funct. Mater. 2023, 33, 2302812.

12. Mengaldo, G.; Renda, F.; Brunton, S. L.; et al. A concise guide to modelling the physics of embodied intelligence in soft robotics. Nat. Rev. Phys. 2022, 4, 595-610.

13. Liu, W.; Duo, Y.; Liu, J.; et al. Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces. Nat. Commun. 2022, 13, 5030.

14. Fan, H.; Liu, X.; Fuh, J. Y. H.; Lu, W. F.; Li, B. Embodied intelligence in manufacturing: leveraging large language models for autonomous industrial robotics. J. Intell. Manuf. 2025, 36, 1141-57.

15. Sun, Z.; Zhu, M.; Lee, C. Progress in the triboelectric human–machine interfaces (HMIs)-moving from smart gloves to AI/haptic enabled HMI in the 5G/IoT era. Nanoenergy. Adv. 2021, 1, 81-120.

16. Wang, T.; Zheng, P.; Li, S.; Wang, L. Multimodal human–robot interaction for human-centric smart manufacturing: a survey. Adv. Intell. Syst. 2024, 6, 2300359.

17. Chen, S.; Pang, Y.; Cao, Y.; Tan, X.; Cao, C. Soft robotic manipulation system capable of stiffness variation and dexterous operation for safe human–machine interactions. Adv. Mater. Technol. 2021, 6, 2100084.

18. Sun, T.; Yao, C.; Liu, Z.; et al. Machine learning-coupled vertical graphene triboelectric pressure sensors array as artificial tactile receptor for finger action recognition. Nano. Energy. 2024, 123, 109395.

19. Zhu, M.; Sun, Z.; Chen, T.; Lee, C. Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system. Nat. Commun. 2021, 12, 2692.

20. Fang, P.; Zhu, M.; Zeng, Z.; et al. A multi-module sensing and Bi-directional HMI integrating interaction, recognition, and feedback for intelligent robots. Adv. Funct. Mater. 2024, 34, 2310254.

21. Hou, C.; Geng, J.; Yang, Z.; et al. A delta-parallel-inspired human machine interface by using self-powered triboelectric nanogenerator toward 3D and VR/AR manipulations. Adv. Mater. Technol. 2021, 6, 2000912.

22. He, T.; Sun, Z.; Shi, Q.; et al. Self-powered glove-based intuitive interface for diversified control applications in real/cyber space. Nano. Energy. 2019, 58, 641-51.

23. Hang, C. Z.; Zhao, X. F.; Xi, S. Y.; et al. Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface. Nano. Energy. 2020, 76, 105064.

24. Zhu, M.; Sun, Z.; Zhang, Z.; et al. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 2020, 6, eaaz8693.

25. Yang, B.; Cheng, J.; Qu, X.; et al. Triboelectric-inertial sensing glove enhanced by charge-retained strategy for human-machine interaction. Adv. Sci. 2025, 12, e2408689.

26. Zhao, Z.; Li, W.; Li, Y.; et al. Embedding high-resolution touch across robotic hands enables adaptive human-like grasping. Nat. Mach. Intell. 2025, 7, 889-900.

27. Lee, G. H.; Lee, Y. R.; Kim, H.; et al. Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics. Nat. Commun. 2022, 13, 2643.

28. Yin, L.; Kim, K. N.; Lv, J.; et al. A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat. Commun. 2021, 12, 1542.

29. Jan, A. A.; Kim, S.; Kim, S. A skin-wearable and self-powered laminated pressure sensor based on triboelectric nanogenerator for monitoring human motion. Soft. Sci. 2024, 4, 10.

30. Zhang, W.; Qin, X.; Li, G.; et al. Self-powered triboelectric-responsive microneedles with controllable release of optogenetically engineered extracellular vesicles for intervertebral disc degeneration repair. Nat. Commun. 2024, 15, 5736.

31. Jin, G.; Sun, Y.; Geng, J.; et al. Bioinspired soft caterpillar robot with ultra-stretchable bionic sensors based on functional liquid metal. Nano. Energy. 2021, 84, 105896.

32. Sun, Z.; Zhu, M.; Shan, X.; Lee, C. Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat. Commun. 2022, 13, 5224.

33. Wu, P.; Yiu, C. K.; Huang, X.; et al. Liquid metal-based strain-sensing glove for human-machine interaction. Soft. Sci. 2023, 3, 35.

34. Li, Z.; Li, Z.; Tang, W.; et al. Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system. Nat. Commun. 2024, 15, 7275.

35. Liao, X.; Song, W.; Zhang, X.; et al. A bioinspired analogous nerve towards artificial intelligence. Nat. Commun. 2020, 11, 268.

36. Wang, W.; Jiang, Y.; Zhong, D.; et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 2023, 380, 735-42.

37. Liu, F.; Deswal, S.; Christou, A.; Sandamirskaya, Y.; Kaboli, M.; Dahiya, R. Neuro-inspired electronic skin for robots. Sci. Robot. 2022, 7, eabl7344.

38. Niu, H.; Li, H.; Gao, S.; et al. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 2022, 34, e2202622.

39. Xu, J.; Sun, X.; Sun, B.; et al. Stretchable, adhesive, and bioinspired visual electronic skin with strain/temperature/pressure multimodal non-interference sensing. ACS. Appl. Mater. Interfaces. 2023, 15, 33774-83.

40. Guo, X.; Sun, Z.; Zhu, Y.; Lee, C. Zero-biased bionic fingertip E-skin with multimodal tactile perception and artificial intelligence for augmented touch awareness. Adv. Mater. 2024, 36, e2406778.

41. Li, S.; Chen, X.; Li, X.; et al. Bioinspired robot skin with mechanically gated electron channels for sliding tactile perception. Sci. Adv. 2022, 8, ade0720.

42. Li, S.; Liu, S.; Wang, L.; Zhu, R. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Robot. 2020, 5, abc8134.

43. Chen, T.; Shi, Q.; Zhu, M.; et al. Triboelectric self-powered wearable flexible patch as 3D motion control interface for robotic manipulator. ACS. Nano. 2018, 12, 11561-71.

44. Shao, B.; Lu, M. H.; Wu, T. C.; et al. Large-area, untethered, metamorphic, and omnidirectionally stretchable multiplexing self-powered triboelectric skins. Nat. Commun. 2024, 15, 1238.

45. Xie, X.; Wang, Q.; Zhao, C.; et al. Neuromorphic computing-assisted triboelectric capacitive-coupled tactile sensor array for wireless mixed reality interaction. ACS. Nano. 2024, 18, 17041-52.

46. Sun, Y.; Chen, T.; Li, D.; et al. Stretchable, multiplexed, and bimodal sensing electronic armor for colonoscopic continuum robot enhanced by triboelectric artificial synapse. Adv. Mater. 2025, 37, e2502203.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/