REFERENCES
1. Wu, Z.; Cheng, H.; Jin, C.; et al. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.
2. Qin, M.; Zhang, L.; Wu, H. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. (Weinh). 2022, 9, 2105553.
3. Lv, H.; Yao, Y.; Yuan, M.; et al. Functional nanoporous graphene superlattice. Nat. Commun. 2024, 15, 1295.
4. Zhang, Y.; Liu, A.; Tian, Y.; et al. Direct-ink-writing printed aerogels with dynamically reversible thermal management and tunable electromagnetic interference shielding. Adv. Mater. , 2025, 2505521.
5. Liu, A.; Qiu, H.; Lu, X.; et al. Asymmetric structural MXene/PBO aerogels for high-performance electromagnetic interference shielding with ultra-low reflection. Adv. Mater. 2024, 37, 2414085.
6. Liu, Y.; Zhou, J.; Li, C.; et al. Interfacial coupling effects in two-dimensional ordered arrays for microwave attenuation. Nat. Commun. 2025, 16, 202.
7. Yuan, L.; Zhao, T.; Dai, J.; et al. High-density, crosstalk-free, flexible electrolyte-gated synaptic transistors array via all-photolithography for multimodal neuromorphic computing. Adv. Funct. Mater. 2025, 35, 2418052.
8. Cheng, S.; Sheng, D.; Mukherjee, S.; et al. Carbon nanolayer-mounted single metal sites enable dipole polarization loss under electromagnetic field. Nat. Commun. 2024, 15, 9077.
9. Tao, J.; Yan, Y.; Zhou, J.; et al. Anionic high-entropy doping engineering for electromagnetic wave absorption. Nat. Commun. 2025, 16, 3163.
10. Liu, L.; Deng, H.; Tang, X.; et al. Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2105838118.
11. Gulati, S.; Yadav, A.; Kumar, N.; Priya, K.; Aggarwal, N. K.; Gupta, R. Phenotypic and genotypic characterization of antioxidant enzyme system in human population exposed to radiation from mobile towers. Mol. Cell. Biochem. 2017, 440, 1-9.
12. Han, Y.; Guo, H.; Qiu, H.; et al. Multimechanism decoupling for low-frequency microwave absorption hierarchical Fe-doped Co magnetic microchains. Adv. Funct. Mater. , 2025, 2506803.
13. Zhou, L.; Hu, P.; Bai, M.; et al. Harnessing the electronic spin states of single atoms for precise electromagnetic modulation. Adv. Mater. 2024, 37, 2418321.
14. Ma, Z.; Xiang, X.; Shao, L.; Zhang, Y.; Gu, J. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. Engl. 2022, 61, e202200705.
15. Li, X.; Sheng, X.; Guo, Y.; et al. Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. J. Mater. Sci. Technol. 2021, 86, 171-9.
16. Wegst, U. G. K.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2014, 14, 23-36.
17. Dang, X.; Yi, H.; Ham, M. H.; et al. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat. Nanotechnol. 2011, 6, 377-84.
18. Chen, Y.; Zheng, Y.; Zhou, Y.; et al. Multi-layered cement-hydrogel composite with high toughness, low thermal conductivity, and self-healing capability. Nat. Commun. 2023, 14, 3438.
19. Zhai, M.; Zhao, S.; Guo, H.; et al. Bionic-structured electromagnetic interference shielding composites. Sci. Bull. (Beijing). 2025, 70, 2347-64.
20. Wang, B.; Ni, C.; Ding, M.; et al. Hierarchically pepper wood-like Co3Fe7@C nanotubes for broadband microwave absorption and efficient electromagnetic interference shielding. J. Mater. Sci. Technol. 2026, 244, 196-207.
21. Cammarata, M.; Nicoletti, F.; Di, Paola. M.; Valenza, A.; Zummo, G. Mechanical behavior of human bones with different saturation levels. In: 2nd International Electronic Conference on Materials: Proceedings of the 2nd International Electronic Conference on Materials; 2016 May 2-16; Online. Basel: MDPI; 2016. p. B003.
22. Xu, H.; Zhan, H.; Xu, Z.; et al. Sandwich-like CNTs/Carbon@Si3N4 porous foam for temperature-insensitive electromagnetic wave absorption. Adv. Funct. Mater. 2025, 35, 2421242.
23. Wei, C.; Shi, L.; Li, M.; et al. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194-203.
24. Zhang, Y.; Ruan, K.; Gu, J. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small. 2021, 17, 2101951.
26. Ajdary, R.; Tardy, B. L.; Mattos, B. D.; Bai, L.; Rojas, O. J. Plant nanomaterials and inspiration from nature: water interactions and hierarchically structured hydrogels. Adv. Mater. 2020, 33, 2001085.
27. Chen, Z.; Zhang, Y.; Wang, Z.; et al. Bioinspired moth-eye multi-mechanism composite ultra-wideband microwave absorber based on the graphite powder. Carbon. 2023, 201, 542-8.
28. Zheng, J.; Lan, D.; Zhang, S.; et al. Zeolite imidazolate framework derived efficient absorbers: From morphology modulation to component regulation. J. Alloys. Compd. 2025, 1010, 177092.
29. Xiao, J.; Zhan, B.; He, M.; et al. Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. 2024, 35, 2316722.
30. Zhang, Y.; Ruan, K.; Zhou, K.; Gu, J. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.
31. Zhao, R.; Gao, T.; Li, Y.; et al. Highly anisotropic Fe3C microflakes constructed by solid-state phase transformation for efficient microwave absorption. Nat. Commun. 2024, 15, 1497.
32. Zhou, Y.; Zhang, Y.; Ruan, K.; et al. MXene-based fibers: preparation, applications, and prospects. Sci. Bull. (Beijing). 2024, 69, 2776-92.
33. Wang, B.; Ni, C.; Xie, X.; Ding, M.; Li, C. Carbon nanotubes-encapsulated Co/Co7Fe3 nanocomposites: achieving wideband electromagnetic wave absorption at ultrathin-thickness by regulating magnetic phase ratio. Chem. Eng. J. 2024, 494, 153076.
34. Li, X.; Niu, M.; Li, C.; et al. Dipole polarization and synchronous magnetic modulation induced by FeN4 moiety on Ti3C2Tx for superior electromagnetic wave absorption performance. Carbon. Energy. , 2025, e70078.
35. Zhang, Y.; Ruan, K.; Guo, Y.; Gu, J. Recent Advances of MXenes-based optical functional materials. Adv. Photonics. Res. 2023, 4, 2300224.
36. Sun, Y.; Su, Y.; Chai, Z.; Jiang, L.; Heng, L. Flexible solid-liquid Bi-continuous electrically and thermally conductive nanocomposite for electromagnetic interference shielding and heat dissipation. Nat. Commun. 2024, 15, 7290.
37. Zhang, Y.; Yan, Y.; Qiu, H.; Ma, Z.; Ruan, K.; Gu, J. A mini-review of MXene porous films: Preparation, mechanism and application. J. Mater. Sci. Technol. 2022, 103, 42-9.
38. Zhou, Y.; Zhang, Y.; Pang, Y.; et al. Thermally conductive Ti3C2Tx fibers with superior electrical conductivity. Nanomicro. Lett. 2025, 17, 235.
39. Du, Z.; Yang, S.; Li, S.; et al. Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature. 2020, 577, 492-6.
40. Murali, G.; Reddy, Modigunta. J. K.; Park, Y. H.; et al. A review on MXene synthesis, stability, and photocatalytic applications. ACS. Nano. 2022, 16, 13370-429.
41. Xie, W.; Tang, Q.; Xie, J.; et al. Organohydrogel-based transparent terahertz absorber via ionic conduction loss. Nat. Commun. 2024, 15, 38.
42. Jiang, H.; Yuan, B.; Guo, H.; et al. Malleable, printable, bondable, and highly conductive MXene/liquid metal plasticine with improved wettability. Nat. Commun. 2024, 15, 6138.
43. Zhao, S.; Zhang, H. B.; Luo, J. Q.; et al. Highly electrically conductive three-dimensional Ti3C2Tc MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS. Nano. 2018, 12, 11193-202.
44. Wu, X.; Wang, Z.; Yu, M.; Xiu, L.; Qiu, J. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 2017, 29, 1607017.
45. Ma, T. B.; Ma, H.; Ruan, K. P.; et al. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248-55.
46. Lin, Y.; Tang, L.; Cheng, L.; et al. Mechanically strong PBO wave-transparent composite papers with excellent UV resistance and ultra-low dielectric constant. J. Mate. Sci. Technol. 2025, 225, 151-8.
47. Lin, Y.; Yong, Z.; Luo, X.; et al. Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light integrated photonics platform. Nat. Commun. 2022, 13, 6362.
48. Bauters, J. F.; Heck, M. J. R.; John, D.; et al. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt. Express. 2011, 19, 3163.
49. Ding, M.; Zhao, D.; Wei, R.; et al. Multifunctional elastomeric composites based on 3D graphene porous materials. Exploration. (Beijing). 2023, 4, 20230057.
50. Wang, H.; Zhao, J.; Wang, Z.; Liu, P. Bird-nest-like multi-interfacial MXene@SiCNWs@Co/C hybrids with enhanced electromagnetic wave absorption. ACS. Appl. Mater. Interfaces. 2023, 15, 4580-90.
51. Wang, L.; Chen, Z.; Wang, X.; et al. Fe3O4@C 3D foam for strong low-frequency microwave absorption. J. Materiomics. 2023, 9, 148-56.
52. Wang, D.; Zhou, C.; Filatov, A. S.; et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science. 2023, 379, 1242-7.
53. Chen, X.; Park, Y. J.; Kang, M.; et al. CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nat. Commun. 2018, 9, 1690.
54. Wang, W.; Chen, S. J.; Chen, W.; Duan, W.; Lai, J. Z.; Sagoe-crentsil, K. Damage-tolerant material design motif derived from asymmetrical rotation. Nat. Commun. 2022, 13, 1289.
55. Zhang, J.; Liu, Z.; Han, M.; Zhang, J.; Tang, Y.; Gu, J. Block copolymer functionalized quartz fibers/cyanate ester wave-transparent laminated composites. J. Mater. Sci. Technol. 2023, 139, 189-97.
56. Ma, X.; Zhang, H.; Guo, Y.; et al. Enhancing thermal conductivity in polysiloxane composites through synergistic design of liquid crystals and boron nitride nanosheets. J. Mater. Sci. Technol. 2025, 231, 54-61.
57. Liu, X.; Zhang, L.; Liu, Y.; Ye, F.; Yin, X. Thermodynamic calculations on the chemical vapor deposition of Si-C-N from the
58. Gao, C.; He, X.; Ye, F.; Wang, S.; Zhang, G. Electromagnetic wave absorption and mechanical properties of CNTs@GN@Fe3O4/PU multilayer composite foam. Materials. (Basel). 2021, 14, 7244.
59. Pang, X.; Zhou, X.; Gao, Y.; Qian, Y.; Lyu, L. Optimization of electromagnetic absorption properties based on graphene, carbon nanotubes, and multidimensional composites. Polym. Compos. 2024, 45, 8414-25.
60. Cai, H.; Lin, Z.; Gao, L.; Feng, C.; Tang, R. Non-magnetic hollow ZnO/C fabricated by a novel ZnO self-sacrificial template hollow engineering for efficient microwave absorption. J. Mater. Sci. 2024, 59, 5371-86.
61. Pan, Y.; Cheng, L.; Lan, D.; et al. Conductor-semiconductor heterointerface polarization enhancement for superior electromagnetic wave absorption. J. Mater. Sci. Technol. 2026, 244, 129-41.
62. Gao, X.; Wang, X.; Cai, J.; et al. CNT cluster arrays grown on carbon fiber for excellent green EMI shielding and microwave absorbing. Carbon. 2023, 211, 118083.
63. Ma, W.; He, P.; Wang, T.; et al. Microwave absorption of carbonization temperature-dependent uniform yolk-shell H-Fe3O4@C microspheres. Chem. Eng. J. 2021, 420, 129875.
64. Liu, X. H.; Cai, J. N.; Zhang, J. Y.; et al. Surface-state-constrained topological insulator Bi2Te3 nanorods for electromagnetic wave trapping and conversion into electricity. J. Mater. Sci. Technol. 2026, 244, 149-55.
65. Hou, Z. L.; Gao, X.; Zhang, J.; Wang, G. A perspective on impedance matching and resonance absorption mechanism for electromagnetic wave absorbing. Carbon. 2024, 222, 118935.
66. Zhang, X.; Xu, L.; Zhou, J.; et al. Liquid metal-derived two-dimensional layered double oxide nanoplatelet-based coatings for electromagnetic wave absorption. ACS. Appl. Nano. Mater. 2021, 4, 9200-12.
67. Gu, W.; Luo, Z.; Wang, J.; et al. Multifunctional lightweight rGO/polyimide hybrid aerogels for highly efficient infrared-radar-acoustic compatibility via heterogeneous interface engineering strategies. J. Mater. Sci. Technol. 2026, 243, 102-14.
68. Zhu, M.; Chen, W.; Lei, Y.; et al. Lightweight porous aerogels comprising nanofibrillated cellulose and MXene nanosheets for simultaneous microwave and sound absorption applications. ACS. Appl. Nano. Mater. 2025, 8, 3584-94.
69. Kong, L.; Zhang, G.; Cui, H.; Qi, J.; Wang, T.; Xu, H. Deformation induced absorption band-tunable smart CNTs/Ti3C2Tx-WPU electromagnetic wave absorbing aerogel. Carbon. 2024, 223, 119023.
70. Kong, L.; Zhang, S.; Liu, Y.; Xu, H.; Fan, X.; Huang, J. Flexible CNTs/CNF-WPU aerogel for smart electromagnetic wave absorbing with tuning effective absorption bandwidth. Carbon. 2023, 207, 13-22.
71. Jing, L.; Luo, F.; Xu, H.; Wang, C.; Pan, H. Mechanically robust Al2O3f/LaPO4/Al2O3 composite for high-performance microwave transparent. J. Alloys. Compd. 2025, 1010, 177974.
72. Guo, S.; Zhang, J.; Lin, C.; Ge, J.; Bi, S.; Hou, Z. L. Multilayer core-shell structured FeNi3@C with enhanced interfacial polarization for microwave absorbers. Nano. Res. 2025, 18, 94907151.
73. Wang, H.; Guo, J.; Lei, Y.; et al. Stable and transparent Ca2+-cross-linked alginate composite films for EMI shielding and joule heating. ACS. Appl. Nano. Mater. 2024, 7, 2100-9.
74. Tang, Z.; Xu, L.; Xie, C.; et al. Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nat. Commun. 2023, 14, 5951.