REFERENCES
1. Chang, T. H.; Tian, Y.; Li, C.; et al. Stretchable graphene pressure sensors with Shar-Pei-like hierarchical wrinkles for collision-aware surgical robotics. ACS. Appl. Mater. Interfaces. 2019, 11, 10226-36.
2. Wang, Y.; Chen, J.; Mei, D. Recognition of surface texture with wearable tactile sensor array: a pilot study. Sens. Actuators. A. Phys. 2020, 307, 111972.
3. Wang, Y.; Chao, M.; Wan, P.; Zhang, L. A wearable breathable pressure sensor from metal-organic framework derived nanocomposites for highly sensitive broad-range healthcare monitoring. Nano. Energy. 2020, 70, 104560.
4. Mao, R.; Yao, W.; Qadir, A.; et al. 3-D graphene aerogel sphere-based flexible sensors for healthcare applications. Sens. Actuators. A. Phys. 2020, 312, 112144.
5. Guo, Y.; Guo, Z.; Zhong, M.; Wan, P.; Zhang, W.; Zhang, L. A flexible wearable pressure sensor with bioinspired microcrack and interlocking for full-range human-machine interfacing. Small 2018, 14, e1803018.
6. Kumar, A. Methods and materials for smart manufacturing: additive manufacturing, Internet of Things, flexible sensors and soft robotics. Manuf. Lett. 2018, 15, 122-5.
7. Lin, X.; Gao, S.; Fei, T.; Liu, S.; Zhao, H.; Zhang, T. Study on a paper-based piezoresistive sensor applied to monitoring human physiological signals. Sens. Actuators. A. Phys. 2019, 292, 66-70.
8. Jiang, Y.; Liang, F.; Li, H. Y.; et al. A flexible and ultra-highly sensitive tactile sensor through a parallel circuit by a magnetic aligned conductive composite. ACS. Nano. 2022, 16, 746-54.
9. Hellebrekers, T.; Kroemer, O.; Majidi, C. Soft magnetic skin for continuous deformation sensing. Adv. Intell. Syst. 2019, 1, 1900025.
10. Ge, J.; Wang, X.; Drack, M.; et al. A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat. Commun. 2019, 10, 4405.
11. Le Signor, T.; Dupre, N.; Close, G. F. A gradiometric magnetic force sensor immune to stray magnetic fields for robotic hands and grippers. IEEE. Robot. Autom. Lett. 2022, 7, 3070-6.
12. Xu, J.; Tat, T.; Zhao, X.; et al. A programmable magnetoelastic sensor array for self-powered human–machine interface. Appl. Phys. Rev. 2022, 9, 031404.
13. Shu, Q.; Xu, Z.; Liu, S.; et al. Magnetic flexible sensor with tension and bending discriminating detection. Chem. Eng. J. 2022, 433, 134424.
14. Xie, S.; Zhang, Y.; Jin, M.; Li, C.; Meng, Q. High sensitivity and wide range soft magnetic tactile sensor based on electromagnetic induction. IEEE. Sens. J. 2021, 21, 2757-66.
15. Becker, C.; Bao, B.; Karnaushenko, D. D.; et al. A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays. Nat. Commun. 2022, 13, 2121.
16. Zhang, X.; Hu, H.; Tang, D.; Zhang, C.; Fu, J.; Zhao, P. Magnetic flexible tactile sensor via direct ink writing. Sens. Actuators. A. Phys. 2021, 327, 112753.
17. Guan, X.; Wang, Z.; Zhao, W.; et al. Flexible piezoresistive sensors with wide-range pressure measurements based on a graded nest-like architecture. ACS. Appl. Mater. Interfaces. 2020, 12, 26137-44.
18. Wei, Y.; Shi, X.; Yao, Z.; et al. Fully paper-integrated hydrophobic and air permeable piezoresistive sensors for high-humidity and underwater wearable motion monitoring. npj. Flex. Electron. 2023, 7, 244.
19. Zhao, T.; Yuan, L.; Li, T.; Chen, L.; Li, X.; Zhang, J. Pollen-shaped hierarchical structure for pressure sensors with high sensitivity in an ultrabroad linear response range. ACS. Appl. Mater. Interfaces. 2020, 12, 55362-71.
20. Lv, C.; Tian, C.; Jiang, J.; et al. Ultrasensitive linear capacitive pressure sensor with wrinkled microstructures for tactile perception. Adv. Sci. 2023, 10, e2206807.
21. Farman, M.; Surendra,
22. Bai, N.; Wang, L.; Xue, Y.; et al. Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad range. ACS. Nano. 2022, 16, 4338-47.
23. Dahiya, S. R.; Valle, M. Tactile sensing for robotic applications. In: Gerardo J, Lanceros-Mendez S, editors. Sensors: focus on tactile force and stress sensors. InTech; 2008.
24. Zapata-Impata, B. S.; Gil, P.; Torres, F. Tactile-driven grasp stability and slip prediction. Robotics 2019, 8, 85.
25. Wang, C.; Dong, L.; Peng, D.; Pan, C. Tactile sensors for advanced intelligent systems. Adv. Intell. Syst. 2019, 1, 1900090.
26. Yan, Y.; Hu, Z.; Yang, Z.; et al. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Robot. 2021, 6, eabc8801.
27. Yan, Y.; Shen, Y.; Song, C.; Pan, J. Tactile super-resolution model for soft magnetic skin. IEEE. Robot. Autom. Lett. 2022, 7, 2589-96.
28. Hu, H.; Zhang, C.; Pan, C.; et al. Wireless flexible magnetic tactile sensor with super-resolution in large-areas. ACS. Nano. 2022, 16, 19271-80.
29. Hu, H.; Zhang, C.; Lai, X.; et al. Large-area magnetic skin for multi-point and multi-scale tactile sensing with super-resolution. npj. Flex. Electron. 2024, 8, 325.
30. Wu, B.; Liu, Q.; Zhang, Q. Tactile pattern super resolution with taxel-based sensors. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan. October 23-27, 2022. IEEE; 2022. pp 3644-50.
31. Xia, Z.; Fang, B.; Sun, F.; et al. Contact shape and pose recognition: utilizing a multipole magnetic tactile sensor with a metalearning model. IEEE. Robot. Automat. Mag. 2022, 29, 127-37.
32. Man, J.; Chen, G.; Chen, J. Recent progress of biomimetic tactile sensing technology based on magnetic sensors. Biosensors 2022, 12, 1054.
33. Huang, L.; Zhang, Z.; Chen, B.; Peng, L. M. Flexible graphene Hall sensors with high sensitivity. In 2015 IEEE International Electron Devices Meeting (IEDM), Washington, USA. December 07-09, 2015. IEEE; 2015. pp 33.5.1-4.
34. Kaidarova, B. A.; Liu, W.; Swanepoel, L.; et al. Flexible Hall sensor made of laser-scribed graphene. npj. Flex. Electron. 2021, 5, 100.
35. Xu, H.; Huang, L.; Zhang, Z.; Chen, B.; Zhong, H.; Peng, L. Flicker noise and magnetic resolution of graphene hall sensors at low frequency. Appl. Phys. Lett. 2013, 103, 112405.
36. Li, P.; Collomb, D.; Lim, Z. J.; et al. High resolution magnetic microscopy based on semi-encapsulated graphene Hall sensors. Appl. Phys. Lett. 2022, 121, 043502.
37. Shah, N.; Iyer, V.; Zhang, Z.; et al. Highly stable integration of graphene Hall sensors on a microfluidic platform for magnetic sensing in whole blood. Microsyst. Nanoeng. 2023, 9, 71.
38. Schaefer, B. T.; Wang, L.; Jarjour, A.; et al. Magnetic field detection limits for ultraclean graphene Hall sensors. Nat. Commun. 2020, 11, 4163.
39. Collomb, D.; Li, P.; Bending, S. J. Nanoscale graphene Hall sensors for high-resolution ambient magnetic imaging. Sci. Rep. 2019, 9, 14424.
40. Izci, D.; Dale, C.; Keegan, N.; Hedley, J. The construction of a graphene Hall effect magnetometer. IEEE. Sens. J. 2018, 18, 9534-41.







