REFERENCES
1. Baghdadi, N. A.; Farghaly Abdelaliem, S. M.; Malki, A.; Gad, I.; Ewis, A.; Atlam, E. Advanced machine learning techniques for cardiovascular disease early detection and diagnosis. J. Big. Data. 2023, 10, 144.
2. Tsao CW, Aday AW, Almarzooq ZI, et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2023 update: a report from the American Heart Association. Circulation. 2023, 147, e93-621.
3. Ghunaim, A. H.; Vervoort, D.; Elfaki, L. A.; Deng, M. X.; Marquis-Gravel, G.; Fremes, S. E. Disparities in therapies for coronary artery disease with reduced left ventricular ejection fraction. Vessel. Plus. 2023, 7, 29.
4. Maltos-Gómez, F.; Brito-López, A.; Uriarte-Ortiz, J. B.; Guízar Sánchez, D. P.; Muñoz-Comonfort, A.; Sampieri-Cabrera, R. Association between diet, physical activity, smoking, and ultra-processed food and cardiovascular health, depression, and sleep quality. Cureus 2024, 16, e66561.
5. Muthukumar, K. A.; Nandi, D.; Ranjan, P.; et al. Integrating electrocardiogram and fundus images for early detection of cardiovascular diseases. Sci. Rep. 2025, 15, 4390.
6. Fan, W.; He, Q.; Meng, K.; et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 2020, 6, eaay2840.
7. Si, S.; Sun, C.; Wu, Y.; et al. 3D interlocked all-textile structured triboelectric pressure sensor for accurately measuring epidermal pulse waves in amphibious environments. Nano. Res. 2024, 17, 1923-32.
8. Cao, M.; Su, J.; Fan, S.; Qiu, H.; Su, D.; Li, L. Wearable piezoresistive pressure sensors based on 3D graphene. Chem. Eng. J. 2021, 406, 126777.
9. Pang, Y.; Tian, H.; Tao, L.; et al. Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS. Appl. Mater. Interfaces. 2016, 8, 26458-62.
10. Jafarizadeh, B.; Chowdhury, A. H.; Khakpour, I.; Pala, N.; Wang, C. Design rules for a wearable micro-fabricated piezo-resistive pressure sensor. Micromachines 2022, 13, 838.
11. Kumar S, Soni A, Kumar A. Evaluation of blood pressure using a flexible and wearable capacitive pressure sensor. RSC. Adv. 2023, 13, 35397-407.
12. Javidi, R.; Moghimi Zand, M.; Alizadeh Majd, S. Designing wearable capacitive pressure sensors with arrangement of porous pyramidal microstructures. Micro. Nano. Syst. Lett. 2023, 11, 13.
13. Kumar A. Flexible and wearable capacitive pressure sensor for blood pressure monitoring. Sens. Bio. Sens. Res. 2021, 33, 100434.
14. Sagar, P.; Sinha, N.; Shukla, M.; Yadav, T.; Kumar, B. Flexible piezoelectric nanogenerator based on Nd-ZnS nanoplates for human body movements detection and wearable electronics. J. Alloys. Compd. 2025, 1010, 178035.
15. Yu, Y.; Zhao, X.; Ge, H.; Ye, L. A self-powered piezoelectric Poly(vinyl alcohol)/Polyvinylidene fluoride fiber membrane with alternating multilayer porous structure for energy harvesting and wearable sensors. Compos. Sci. Technol. 2024, 247, 110429.
16. Lin, Z.; Zou, M.; Lu, Y.; et al. Device design and data processing strategies for self-powered cardiovascular sensors. Device 2025, 3, 100726.
17. Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480-521.
18. Fang, Y.; Zou, Y.; Xu, J.; et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 2021, 33, e2104178.
19. Jafarizadeh, B.; Chowdhury, A. H.; Islam Sozal, M. S.; Cheng, Z.; Pala, N.; Wang, C. Wearable system integrating dual piezoresistive and photoplethysmography sensors for simultaneous pulse wave monitoring. ACS. Appl. Mater. Interfaces. 2024, 16, 65402-13.
20. Yan, J.; Ye, Z.; Shi, F.; et al. Reflection-type photoplethysmography pulse sensor based on an integrated optoelectronic chip with a ring structure. Biomed. Opt. Express. 2021, 12, 6277-83.
21. Ding, L.; Wang, Y.; Sun, C.; et al. Three-dimensional structured dual-mode flexible sensors for highly sensitive tactile perception and noncontact sensing. ACS. Appl. Mater. Interfaces. 2020, 12, 20955-64.
22. Jahnavi, M.; Sharan, B.; Singh, M.; Uma, B. V.; Maruthy, K. N. Assessment of pulse wave velocity in obese adults using ECG and finger tip photo pulse plethysmography. Int. Physiol. J. 2020, 7, 66-9.
23. Pang, C.; Koo, J. H.; Nguyen, A.; et al. Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 2015, 27, 634-40.
24. Biswas, D.; Everson, L.; Liu, M.; et al. CorNET: deep learning framework for PPG-based heart rate estimation and biometric identification in ambulant environment. IEEE. Trans. Biomed. Circuits. Syst. 2019, 13, 282-91.
25. Han, M.; Chen, L.; Aras, K.; et al. Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery. Nat. Biomed. Eng. 2020, 4, 997-1009.
26. Song, D.; Miao, J.; Zhang, Y.; Zhu, A. Relationship between estimated pulse wave velocity and the risk of future sarcopenia in middle-aged and older Chinese adults: evidence from the China Health and Retirement Longitudinal Study. Front. Cardiovasc. Med. 2025, 12, 1494635.
27. Omboni, S.; Arystan, A.; Benczur, B. Ambulatory monitoring of central arterial pressure, wave reflections, and arterial stiffness in patients at cardiovascular risk. J. Hum. Hypertens. 2022, 36, 352-63.
28. Wang, X.; Yang, J.; Meng, K.; et al. Enabling the unconstrained epidermal pulse wave monitoring via finger-touching. Adv. Funct. Mater. 2021, 31, 2102378.
29. Kumar, R.; Aggarwal, Y.; Nigam, V. K.; Sinha, R. K. Correlation of Poincare plot derived stress score and heart rate variability parameters in the assessment of coronary artery disease. Biomed. Eng. Appl. Basis. Commun. 2024, 36, 2350040.