REFERENCES
1. Meitl, M. A.; Zhu, Z.; Kumar, V.; et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature. Mater. 2006, 5, 33-8.
2. Feng, X.; Meitl, M. A.; Bowen, A. M.; Huang, Y.; Nuzzo, R. G.; Rogers, J. A. Competing fracture in kinetically controlled transfer printing. Langmuir 2007, 23, 12555-60.
3. Kim, S. S.; Chalykh, R.; Kim, H.; et al. Progress in EUV lithography toward manufacturing. In Proceedings of SPIE - The International Society for Optical Engineering, San Jose, USA. February 27 - March 02, 2017. SPIE: 2017. Vol. 10143, pp. 1014306. https://www.researchgate.net/publication/315650357_Progress_in_EUV_lithography_toward_manufacturing. (accessed 11 Sep 2025).
4. Cheimarios, N.; Kokkoris, G.; Boudouvis, A. G. Multiscale modeling in chemical vapor deposition processes: models and methodologies. Arch. Computat. Methods. Eng. 2021, 28, 637-72.
5. Luo, H.; Li, C.; Wang, S.; Zhang, S.; Song, J. Switchable adhesive based on shape memory polymer with micropillars of different heights for laser-driven noncontact transfer printing. ACS. Appl. Mater. Interfaces. 2024, 16, 9443-52.
6. Zhang, S.; Luo, H.; Wang, S.; et al. A thermal actuated switchable dry adhesive with high reversibility for transfer printing. Int. J. Extrem. Manuf. 2021, 3, 035103.
7. Chen, F.; Gai, M.; Sun, N.; et al. Laser-driven hierarchical “gas-needles” for programmable and high-precision proximity transfer printing of microchips. Sci. Adv. 2023, 9, eadk0244.
8. Chen, F.; Bian, J.; Hu, J.; et al. Mass transfer techniques for large-scale and high-density microLED arrays. Int. J. Extrem. Manuf. 2022, 4, 042005.
9. Wang, Y.; Solberg, S.; Lu, J.; et al. Programmable micro-transfer-printing for heterogeneous material integration. AIP. Adv. 2022, 12, 065110.
10. Linghu, C.; Zhang, S.; Wang, C.; Song, J. Transfer printing techniques for flexible and stretchable inorganic electronics. npj. Flex. Electron. 2018, 2, 26.
11. Zhou, H.; Qin, W.; Yu, Q.; Cheng, H.; Yu, X.; Wu, H. Transfer printing and its applications in flexible electronic devices. Nanomaterials 2019, 9, 283.
12. Kim, Y.; Yang, J.; Choi, M. K. Recent advances in transfer printing of colloidal quantum dots for high-resolution full color displays. Korean. J. Chem. Eng. 2024, 41, 3469-82.
13. Yoon, J.; Lee, S.; Kang, D.; Meitl, M. A.; Bower, C. A.; Rogers, J. A. Heterogeneously integrated optoelectronic devices enabled by micro-transfer printing. Adv. Opt. Mater. 2015, 3, 1313-35.
14. Huang, Z.; Lin, Y. Transfer printing technologies for soft electronics. Nanoscale 2022, 14, 16749-60.
15. Cheng, H.; Li, M.; Wu, J.; et al. A viscoelastic model for the rate effect in transfer printing. J. Appl. Mech. 2013, 80, 041019.
16. Yin, H.; Ma, Y.; Feng, X. Rate-dependent peeling behavior of the viscoelastic film-substrate system. Int. J. Solids. Struct. 2024, 286-7, 112588.
17. Keum, H.; Carlson, A.; Eisenhaure, J. D.; Rogers, J. A.; Kim, S. Deterministically assembled three-dimensional silicon microstructures using elastomeric stamps. In 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France. January 29 - February 02, 2012. IEEE; 2012. pp. 224-7.
18. Kim, S.; Wu, J.; Carlson, A.; et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 17095-100.
19. Zhao, X.; Liang, Z.; Zhang, R.; Zhao, Q.; Ma, Y.; Feng, X. Dual-interface competitive fracture model for curvature-based transfer printing method. Adv. Mater. Interfaces. 2024, 11, 2400303.
20. Cho, S.; Kim, N.; Song, K.; Lee, J. Adhesiveless transfer printing of ultrathin microscale semiconductor materials by controlling the bending radius of an elastomeric stamp. Langmuir 2016, 32, 7951-7.
21. Carlson, A.; Kim-Lee, H.; Wu, J.; et al. Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly. Appl. Phys. Lett. 2011, 98, 264104.
22. Yang, S. Y.; Carlson, A.; Cheng, H.; et al. Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications. Adv. Mater. 2012, 24, 2117-22.
23. Lee, J.; So, H. Aphid-inspired and thermally-actuated soft gripper using 3D printing technology. Macromol. Rapid. Commun. 2023, 44, e2300352.
24. Linghu, C.; Wang, C.; Cen, N.; Wu, J.; Lai, Z.; Song, J. Rapidly tunable and highly reversible bio-inspired dry adhesion for transfer printing in air and a vacuum. Soft. Matter. 2018, 15, 30-7.
25. Liang, C.; Wang, F.; Huo, Z.; Shi, B.; Tian, Y.; Zhang, D. Adhesion performance study of a novel microstructured stamp for micro-transfer printing. Soft. Matter. 2021, 17, 4989-97.
26. Lee, H.; Um, D. S.; Lee, Y.; Lim, S.; Kim, H. J.; Ko, H. Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes. Adv. Mater. 2016, 28, 7457-65.
27. Yoo, J. I.; Kim, S. H.; Ko, H. C. Stick-and-play system based on interfacial adhesion control enhanced by micro/nanostructures. Nano. Res. 2021, 14, 3143-58.
28. Shi, X.; Yang, L.; Li, S.; Guo, Y.; Zhao, Z. Magnetic-field-driven switchable adhesion of NdFeB/PDMS composite with gecko-like surface. Nano. Res. 2023, 16, 6840-8.
29. Saeidpourazar, R.; Li, R.; Li, Y.; et al. Laser-driven micro transfer placement of prefabricated microstructures. J. Microelectromech. Syst. 2012, 21, 1049-58.
30. Huang, Y.; Zheng, N.; Cheng, Z.; et al. Direct laser writing-based programmable transfer printing via bioinspired shape memory reversible adhesive. ACS. Appl. Mater. Interfaces. 2016, 8, 35628-33.
31. Luo, H.; Wang, C.; Linghu, C.; Yu, K.; Wang, C.; Song, J. Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric microstructured stamp. Natl. Sci. Rev. 2020, 7, 296-304.
32. Linghu, C.; Zhang, S.; Wang, C.; et al. Universal SMP gripper with massive and selective capabilities for multiscaled, arbitrarily shaped objects. Sci. Adv. 2020, 6, eaay5120.
33. Eisenhaure, J.; Kim, S. Laser-driven shape memory effect for transfer printing combining parallelism with individual object control. Adv. Mater. Technol. 2016, 1, 1600098.
34. Kim, J.; Kim, S.; Yun, T.; et al. Shape memory polymer surfaces with controllable roughness for multiscale switchable dry adhesion. Nat. Commun. 2025, 16, 4954.
35. Gablech, I.; Głowacki, E. D. State-of-the-art electronic materials for thin films in bioelectronics. Adv. Elect. Mater. 2023, 9, 2300258.
36. Pham, P. V.; Mai, T. H.; Dash, S. P.; et al. Transfer of 2D films: from imperfection to perfection. ACS. Nano. 2024, 18, 14841-76.
37. Nam, Y.; Shin, D.; Choi, J. G.; et al. Ultra-thin GaAs single-junction solar cells for self-powered skin-compatible electrocardiogram sensors. Small. Methods. 2024, 8, e2301735.
38. Han, S.; Xu, Z.; Meng, Y.; Bae, S. Chapter 17 - 2D materials–based electronics enabled by transfer printing technologies. In Transfer printing technologies and applications. Elsevier; 2024. pp. 475-93.
39. Sakthinathan, S.; Meenakshi, G. A.; Vinothini, S.; et al. A review of thin-film growth, properties, applications, and future prospects. Processes 2025, 13, 587.
40. Malureanu, R.; Lavrinenko, A. Ultra-thin films for plasmonics: a technology overview. Nanotechnol. Rev. 2015, 4, 259-75.
41. Gao, W.; Huang, J.; He, J.; et al. Recent advances in ultrathin materials and their applications in e-skin. InfoMat 2023, 5, e12426.
42. Huang, W.; Ong, X. C.; Kwon, I. S.; et al. Ultracompliant hydrogel-based neural interfaces fabricated by aqueous-phase microtransfer printing. Adv. Funct. Mater. 2018, 28, 1801059.
43. Chen, L.; Liang, H.; Liu, P.; et al. Sustainable lithography paradigm enabled by mechanically peelable resists. Adv. Mater. 2025, 37, e2410978.
44. Liu, G.; Tian, Z.; Yang, Z.; et al. Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nat. Electron. 2022, 5, 275-80.
45. Bae, S.; Kim, H.; Lee, Y.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574-8.
46. Zhang, X.; Zhou, L.; Wang, S.; et al. Se-mediated dry transfer of wafer-scale 2D semiconductors for advanced electronics. Nat. Commun. 2025, 16, 4468.
47. Gong, Z. Layer-scale and chip-scale transfer techniques for functional devices and systems: a review. Nanomaterials 2021, 11, 842.
48. Wu, H.; Sariola, V.; Zhu, C.; Zhao, J.; Sitti, M.; Bettinger, C. J. Transfer printing of metallic microstructures on adhesion-promoting hydrogel substrates. Adv. Mater. 2015, 27, 3398-404.
49. Le Borgne, B.; De Sagazan, O.; Crand, S.; Jacques, E.; Harnois, M. Conformal electronics wrapped around daily life objects using an original method: water transfer printing. ACS. Appl. Mater. Interfaces. 2017, 9, 29424-9.
50. Le Borgne, B.; Liu, S.; Morvan, X.; et al. Water transfer printing enhanced by water-induced pattern expansion: toward large-area 3D electronics. Adv. Mater. Technol. 2019, 4, 1800600.
51. Sun, W.; Li, Z.; Zhu, X.; et al. Electric field-driven jetting and water-assisted transfer printing for high-resolution electronics on complex curved surfaces. Electronics 2024, 13, 1182.
52. Xu, Z.; Guo, Q.; Yang, L.; et al. Water-soluble and environmentally friendly UV photodetector fabricated through solvent-free material patterning. In 2025 IEEE 38th International Conference on Micro Electro Mechanical Systems (MEMS), Kaohsiung, Taiwan. January 19-23, 2025. IEEE; 2025. pp. 708-11.
53. Anderson, T. L. Fracture mechanics: fundamentals and applications. 3rd edition. CRC press; 2005.
54. Hutchinson, J. W.; Suo, Z. Mixed mode cracking in layered materials. Adv. Appl. Mech. 1991, 29, 63-191.
55. León Baldelli, A.; Babadjian, J.; Bourdin, B.; Henao, D.; Maurini, C. A variational model for fracture and debonding of thin films under in-plane loadings. J. Mech. Phys. Solids. 2014, 70, 320-48.
56. Jung, A.; Ha, N.; Kim, N.; et al. Multiple transfer of layer-by-layer nanofunctional films by adhesion controls. ACS. Appl. Mater. Interfaces. 2019, 11, 48476-86.
57. Li, Y.; Zhang, F.; Wang, S. Regulatable interfacial adhesion between stamp and ink for transfer printing. Interdiscip. Mater. 2024, 3, 29-53.
58. Chen, Z.; Zhang, C.; Zheng, Z. Advancements in transfer printing techniques for flexible electronics: adjusting interfaces and promoting versatility. Int. J. Extrem. Manuf. 2024, 6, 052005.
59. Ahn, J.; Jang, H.; Jeong, Y.; et al. Illuminating recent progress in nanotransfer printing: core principles, emerging applications, and future perspectives. Adv. Sci. 2024, 11, e2303704.
60. Linghu, C.; Mu, T.; Zhao, W.; et al. Advancing smart dry adhesives with shape memory polymers. Int. J. Smart. Nano. Mater. 2025, 16, 103-43.
61. Zhang, L.; Zhang, C.; Tan, Z.; Tang, J.; Yao, C.; Hao, B. Research progress of microtransfer printing technology for flexible electronic integrated manufacturing. Micromachines 2021, 12, 1358.
62. Wu, H.; Tian, Y.; Luo, H.; Zhu, H.; Duan, Y.; Huang, Y. Fabrication techniques for curved electronics on arbitrary surfaces. Adv. Mater. Technol. 2020, 5, 2000093.
63. Park, J.; Lee, Y.; Lee, H.; Ko, H. Transfer printing of electronic functions on arbitrary complex surfaces. ACS. Nano. 2020, 14, 12-20.
64. Zeng, Y.; Peng, C.; Hong, W.; et al. Review on metallization approaches for high-efficiency silicon heterojunction solar cells. Trans. Tianjin. Univ. 2022, 28, 358-73.
65. Lee, C. H.; Kim, D. R.; Zheng, X. Transfer printing methods for flexible thin film solar cells: basic concepts and working principles. ACS. Nano. 2014, 8, 8746-56.
66. Chen, L.; Liang, H.; Liu, P.; et al. Phase-change stamp with highly switchable adhesion and stiffness for damage-free multiscale transfer printing. ACS. Nano. 2024, 18, 23968-78.
67. Yan, Z.; Pan, T.; Xue, M.; et al. Thermal release transfer printing for stretchable conformal bioelectronics. Adv. Sci. 2017, 4, 1700251.
68. Wang, C.; Linghu, C.; Nie, S.; et al. Programmable and scalable transfer printing with high reliability and efficiency for flexible inorganic electronics. Sci. Adv. 2020, 6, eabb2393.
69. Shin, Y.; Hong, S.; Hur, Y. C.; et al. Damage-free dry transfer method using stress engineering for high-performance flexible two- and three-dimensional electronics. Nat. Mater. 2024, 23, 1411-20.
70. Sim, K.; Chen, S.; Li, Z.; et al. Three-dimensional curvy electronics created using conformal additive stamp printing. Nat. Electron. 2019, 2, 471-9.
71. Shu, Z.; Feng, B.; Liu, P.; et al. Near-zero-adhesion-enabled intact wafer-scale resist-transfer printing for high-fidelity nanofabrication on arbitrary substrates. Int. J. Extrem. Manuf. 2024, 6, 015102.
72. Chen, Z.; Lu, X.; Wang, H.; et al. Electrochemical replication and transfer for low-cost, sub-100 nm patterning of materials on flexible substrates. Adv. Mater. 2023, 35, e2210778.
73. Chen, L.; Liu, P.; Feng, B.; et al. Dry-transferable photoresist enabled reliable conformal patterning for ultrathin flexible electronics. Adv. Mater. 2023, 35, e2303513.
74. Zhou, Y.; Chen, L.; Shu, Z.; Fan, F.; Hu, Y.; Duan, H. Wafer-level perfect conformal contact lithography at the diffraction limit enabled by dry transferable photoresist. Int. J. Extrem. Manuf. 2025, 7, 065101.
75. Zhou, Y.; Feng, B.; Chen, L.; Fan, F.; Ji, Z.; Duan, H. Wafer-recyclable, eco-friendly, and multiscale dry transfer printing by transferable photoresist for flexible epidermal electronics. ACS. Appl. Mater. Interfaces. 2024, 16, 13525-33.
76. Liu, J.; Pang, B.; Xue, R.; et al. Sacrificial layer-assisted nanoscale transfer printing. Microsyst. Nanoeng. 2020, 6, 80.
77. He, Y.; Lv, Z.; Liu, Z.; et al. Sacrifice-layer-free transfer of wafer-scale atomic-layer-deposited dielectrics and full-device stacks for two-dimensional electronics. Nat. Commun. 2025, 16, 5904.
78. Liu, H.; Thi, Q. H.; Man, P.; et al. Controlled adhesion of ice-toward ultraclean 2D materials. Adv. Mater. 2023, 35, e2210503.
79. Shi, C.; Jiang, J.; Li, C.; Chen, C.; Jian, W.; Song, J. Precision-induced localized molten liquid metal stamps for damage-free transfer printing of ultrathin membranes and 3D objects. Nat. Commun. 2024, 15, 8839.
80. Zabow, G. Reflow transfer for conformal three-dimensional microprinting. Science 2022, 378, 894-8.
81. Yi, H.; Seong, M.; Sun, K.; et al. Wet-responsive, reconfigurable, and biocompatible hydrogel adhesive films for transfer printing of nanomembranes. Adv. Funct. Mater. 2018, 28, 1706498.
82. Guo, Q.; Xu, Z.; Yang, L.; et al. High-precision and wafer-scale transfer lithography of commercial photoresists via reversible adhesion for sustainable microfabrication on diverse substrates. arXiv 2025, arXiv:2504.15078. https://doi.org/10.48550/arXiv.2504.15078. (accessed 2025-09-11).
83. Gu, Z.; Li, S.; Zhang, F.; Wang, S. Understanding surface adhesion in nature: a peeling model. Adv. Sci. 2016, 3, 1500327.
84. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103-69.
85. Barlow, S.; Raval, R. Complex organic molecules at metal surfaces: bonding, organisation and chirality. Surf. Sci. Rep. 2003, 50, 201-341.
86. Chandekar, A.; Sengupta, S. K.; Whitten, J. E. Thermal stability of thiol and silane monolayers: a comparative study. Appl. Surf. Sci. 2010, 256, 2742-9.
87. Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, R. C. Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev. 2010, 39, 1805-34.
88. Li, Z.; Liu, X.; Shi, J.; et al. Residue-free wafer-scale direct imprinting of two-dimensional materials. Nat. Electron. 2025, 8, 571-7.
89. Hoque, E.; DeRose, J. A.; Bhushan, B.; Hipps, K. W. Low adhesion, non-wetting phosphonate self-assembled monolayer films formed on copper oxide surfaces. Ultramicroscopy 2009, 109, 1015-22.
90. Kulkarni, S. A.; Mirji, S.; Mandale, A.; Gupta, R.; Vijayamohanan, K. P. Growth kinetics and thermodynamic stability of octadecyltrichlorosilane self-assembled monolayer on Si (100) substrate. Mater. Lett. 2005, 59, 3890-5.
91. Hong, F. C. N.; Kao, Y. C. Residual-layer-free printing by selective filling of self-assembled monolayer-treated mold. J. Vac. Sci. Technol. B. 2011, 29, 041601.
92. Chen, Z.; Fu, J.; Chen, F.; et al. Construction of 3D patterns through modified electrochemical replication and transfer. Adv. Mater. Technol. 2024, 9, 2301695.
93. Zhang, S.; Ling, H.; Chen, Y.; et al. Hydrogel-enabled transfer-printing of conducting polymer films for soft organic bioelectronics. Adv. Funct. Mater. 2020, 30, 1906016.
95. Kang, K.; Xie, S.; Huang, L.; et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656-60.
96. Yoon, H. H.; Jung, S.; Choi, G.; et al. Strong fermi-level pinning at metal/n-Si(001) interface ensured by forming an intact schottky contact with a graphene insertion layer. Nano. Lett. 2017, 17, 44-9.
97. Lafontaine, W. R.; Li, C. Hardness and adhesion measurements of copper metallizations by a continuous indentation approach. MRS. Proc. 1990, 203, 163-8.
98. Liu, Y.; Guo, J.; Zhu, E.; et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.
99. Chen, Z.; Mo, C.; Zhang, X.; Hu, W. Electrode transfer method toward high-performance interfaces and devices. Matter 2022, 5, 2484-6.
100. Dappe, Y. J.; Basanta, M. A.; Flores, F.; Ortega, J. Weak chemical interaction and van der Waals forces between graphene layers: a combined density functional and intermolecular perturbation theory approach. Phys. Rev. B. 2006, 74, 205434.
101. Kim, J.; Bayram, C.; Park, H.; et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 2014, 5, 4836.
102. Kim, Y.; Cruz, S. S.; Lee, K.; et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 2017, 544, 340-3.
104. Heo, S.; Ha, J.; Son, S. J.; et al. Instant, multiscale dry transfer printing by atomic diffusion control at heterogeneous interfaces. Sci. Adv. 2021, 7, eabh0040.
105. Doudrick, K.; Liu, S.; Mutunga, E. M.; et al. Different shades of oxide: from nanoscale wetting mechanisms to contact printing of gallium-based liquid metals. Langmuir 2014, 30, 6867-77.
106. Lin, J.; Yu, J.; Zhang, L.; Wu, K.; Shi, C. FEA study on liquid droplet stamp contact of thin film devices. Eur. Phys. J. Spec. Top. 2025.
107. Liu, X.; Cao, Y.; Zheng, K.; et al. Liquid droplet stamp transfer printing. Adv. Funct. Mater. 2021, 31, 2105407.
108. Li, H.; Wang, Z.; Cao, Y.; Chen, Y.; Feng, X. High-efficiency transfer printing using droplet stamps for robust hybrid integration of flexible devices. ACS. Appl. Mater. Interfaces. 2021, 13, 1612-9.
109. Chen, T.; Cong, Q.; Sun, C.; Jin, J.; Choy, K. Influence of substrate initial temperature on adhesion strength of ice on aluminum alloy. Cold. Reg. Sci. Technol. 2018, 148, 142-7.
110. Janjua, Z. A. The influence of freezing and ambient temperature on the adhesion strength of ice. Cold. Reg. Sci. Technol. 2017, 140, 14-9.
111. Kim, H. H.; Kang, B.; Suk, J. W.; et al. Clean transfer of wafer-scale graphene via liquid phase removal of polycyclic aromatic hydrocarbons. ACS. Nano. 2015, 9, 4726-33.
112. Zhang, X.; Liu, C.; Tang, R.; et al. Liquid metal neuro-electrical interface. Soft. Sci. 2024, 4, 23.
113. Ye, Z.; Lum, G. Z.; Song, S.; Rich, S.; Sitti, M. Phase change of gallium enables highly reversible and switchable adhesion. Adv. Mater. 2016, 28, 5088-92.
114. Chang, X.; Liu, E.; Liao, H.; et al. Thermal reflow transfer printing of ultra-thin metal conductive layer for flexible sensors on fabric substrate. IEEE. Sens. J. 2025, 25, 23615-22.
115. Li, C.; Luo, H.; Lin, X.; Zhang, S.; Song, J. Laser-driven noncontact bubble transfer printing via a hydrogel composite stamp. Proc. Natl. Acad. Sci. U. S. A. 2024, 121, e2318739121.
116. Cha, C.; Soman, P.; Zhu, W.; et al. Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds. Biomater. Sci. 2014, 2, 703-9.
118. Gan, Y.; Chen, K.; Zhang, J.; et al. Shape memory polymer assisted transfer printing of large-area metal thin film. In 2024 IEEE 19th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Kyoto, Japan. May 02-05, 2024. IEEE; 2024. p. 1-4.
119. Fan, F.; Chen, L.; Zhou, Y.; Duan, H. Multiscale transfer printing via shape memory polymer with high adhesion and modulus switchability. ACS. Appl. Mater. Interfaces. 2024, 16, 26824-32.
120. Bayley, F. A.; Liao, J. L.; Stavrinou, P. N.; Chiche, A.; Cabral, J. T. Wavefront kinetics of plasma oxidation of polydimethylsiloxane: limits for sub-μm wrinkling. Soft. Matter. 2014, 10, 1155-66.
121. Park, S.; Kim, M.; So, H. TPU-assisted adhesive PDMS film for dry or underwater environments. NPG. Asia. Mater. 2024, 16, 546.
122. Qiu, Y.; Zhang, B.; Yang, J.; et al. Wafer-scale integration of stretchable semiconducting polymer microstructures via capillary gradient. Nat. Commun. 2021, 12, 7038.
123. Yoo, J.; Lee, K.; Yang, U. J.; et al. Highly efficient printed quantum dot light-emitting diodes through ultrahigh-definition double-layer transfer printing. Nat. Photon. 2024, 18, 1105-12.
124. Shao, Y.; Li, M.; Tian, H.; et al. Gecko-inspired intelligent adhesive structures for rough surfaces. Research 2025, 8, 0630.
125. Cheng, X.; Shen, Z.; Zhang, Y. Bioinspired 3D flexible devices and functional systems. Natl. Sci. Rev. 2024, 11, nwad314.
126. Guimarães, C. F.; Gasperini, L.; Marques, A. P.; Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 2020, 5, 351-70.
127. Yeo, W. H.; Kim, Y. S.; Lee, J.; et al. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 2013, 25, 2773-8.
128. Zhang, Y.; Zheng, N.; Cao, Y.; et al. Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Sci. Adv. 2019, 5, eaaw1066.
129. Chen, X.; Jian, W.; Wang, Z.; et al. Wrap-like transfer printing for three-dimensional curvy electronics. Sci. Adv. 2023, 9, eadi0357.
130. Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143-53.
131. Choi, C.; Choi, M. K.; Liu, S.; et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 2017, 8, 1664.
132. Jung, I.; Xiao, J.; Malyarchuk, V.; et al. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 1788-93.
133. Zhang, K.; Jung, Y. H.; Mikael, S.; et al. Origami silicon optoelectronics for hemispherical electronic eye systems. Nat. Commun. 2017, 8, 1782.
134. Weng, K.; Jing, Q.; Gao, J.; et al. Facile design of highly stretchable and conductive crumpled graphene/NiS2 films for multifunctional applications. Small. Methods. 2025, 9, e2401965.
135. Gao, Y.; Chen, J.; Chen, G.; Fan, C.; Liu, X. Recent progress in the transfer of graphene films and nanostructures. Small. Methods. 2021, 5, e2100771.
136. Liu, Y.; Duan, X.; Shin, H. J.; Park, S.; Huang, Y.; Duan, X. Promises and prospects of two-dimensional transistors. Nature 2021, 591, 43-53.
137. Kang, K.; Lee, K. H.; Han, Y.; et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 2017, 550, 229-33.
138. Bediako, D. K.; Rezaee, M.; Yoo, H.; et al. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 2018, 558, 425-9.
139. Lee, C. H.; Lee, G. H.; van, der. Zande. A. M.; et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676-81.
140. Akinwande, D.; Huyghebaert, C.; Wang, C. H.; et al. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507-18.
141. Si, M.; Su, C. J.; Jiang, C.; et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat. Nanotechnol. 2018, 13, 24-8.
142. Schulman, D. S.; Arnold, A. J.; Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 2018, 47, 3037-58.
143. Allain, A.; Kang, J.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195-205.
144. Wang, Y.; Kim, J. C.; Wu, R. J.; et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70-4.
145. Lamoureux, A.; Lee, K.; Shlian, M.; Forrest, S. R.; Shtein, M. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 2015, 6, 8092.
146. Janssen, G. Stress and strain in polycrystalline thin films. Thin. Solid. Films. 2007, 515, 6654-64.
147. Windischmann, H. Intrinsic stress in sputter-deposited thin films. Crit. Rev. Solid. State. Mater. Sci. 1992, 17, 547-96.