REFERENCES

1. Li, C.; Liang, L.; Zhang, B.; Yang, Y.; Ji, G. Magneto-dielectric synergy and multiscale hierarchical structure design enable flexible multipurpose microwave absorption and infrared stealth compatibility. Nanomicro. Lett. 2024, 17, 40.

2. Cao, X.; Lan, D.; Zhang, Y.; Jia, Z.; Wu, G.; Yin, P. Construction of three-dimensional conductive network and heterogeneous interfaces via different ratio for tunable microwave absorption. Adv. Compos. Hybrid. Mater. 2023, 6, 763.

3. Sharma, S.; Parne, S. R.; Panda, S. S. S.; Gandi, S. Progress in microwave absorbing materials: a critical review. Adv. Colloid. Interface. Sci. 2024, 327, 103143.

4. Zhao, Z.; Qing, Y.; Kong, L.; et al. Advancements in microwave absorption motivated by interdisciplinary research. Adv. Mater. 2024, 36, e2304182.

5. Zhang, Z.; Cai, Z.; Wang, Z.; et al. A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nanomicro. Lett. 2021, 13, 56.

6. Wang, M.; Cao, M. Perspectives on metal-organic framework-derived microwave absorption materials. J. Mater. Sci. Technol. 2025, 214, 37-52.

7. Li, N.; Zong, Z.; Zhang, F.; et al. Barium ferrite with high anisotropy for ultra-broadband microwave absorption. Adv. Funct. Mater. 2025, 35, 2414694.

8. Li, Z.; Duan, Y.; Liu, X.; et al. Strategy-induced strong exchange interaction for enhancing high-temperature magnetic loss in high-entropy alloy powders. Adv. Funct. Mater. 2025, 2507152.

9. Xiang, X.; Yang, Z.; Fang, G.; et al. Tailoring tactics for optimizing microwave absorbing behaviors in ferrite materials. Mater. Today. Phys. 2023, 36, 101184.

10. Li, W.; Xu, X.; Fan, L.; et al. Porous pure magnetic foam with engineered heterointerfaces for enhanced microwave absorption. J. Mater. Sci. Technol. 2025, 234, 113-21.

11. liu, Z.; Wang, L.; Zhao, Y.; et al. Environmental adaptability and efficient electromagnetic wave protection of C/Co aerogels by anchoring Co to biomass carbon via the high-temperature induced morphological transformation of ZIF-67. Nano. Research. 2025, 18, 94907581.

12. Wu, Z.; Huang, J.; Zeng, X. Dual magnetic particles modified carbon nanosheets in CoFe/Co@NC heterostructure for efficient electromagnetic synergy. Soft. Sci. 2024, 4, 42.

13. Zhou, L.; Hu, P.; Bai, M.; et al. Harnessing the electronic spin states of single atoms for precise electromagnetic modulation. Adv. Mater. 2025, 37, e2418321.

14. Song, X. J.; Zhang, T.; Gu, Z. X.; et al. Record enhancement of Curie temperature in host-guest inclusion ferroelectrics. J. Am. Chem. Soc. 2021, 143, 5091-8.

15. Mishra, S.; Park, I. K.; Javaid, S.; Shin, S. H.; Lee, G. Enhancement of interlayer exchange coupling via intercalation in 2D magnetic bilayers: towards high Curie temperature. Mater. Horiz. 2024, 11, 4482-92.

16. Mohapatra, P. P.; Singh, H. K.; Dobbidi, P. Advancements in electromagnetic microwave absorbers: Ferrites and carbonaceous materials. Adv. Colloid. Interface. Sci. 2025, 337, 103381.

17. Zhang, K.; Zhang, J.; Hou, Z.; Bi, S.; Zhao, Q. Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 2019, 141, 608-17.

18. An, Q.; Li, D.; Liao, W.; et al. A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures. Adv. Mater. 2023, 35, e2300659.

19. Li, J.; Chen, S.; Fan, R.; et al. Structural engineering on carbon materials for microwave absorption: From micro to macro to meta. Carbon 2024, 224, 119058.

20. Liu, X.; Duan, Y.; Wu, N.; et al. Modulating electromagnetic genes through Bi-phase high-entropy engineering toward temperature-stable ultra-broadband megahertz electromagnetic wave absorption. Nanomicro. Lett. 2025, 17, 164.

21. Chen, H.; Cao, Y.; Wang, C.; et al. Superhydrophobic surfaces for the sustainable maintenance of building materials and stone-built heritage: the challenges, opportunities and perspectives. Adv. Colloid. Interface. Sci. 2025, 335, 103343.

22. Zhai, M.; Zhao, S.; Guo, H.; et al. Bionic-structured electromagnetic interference shielding composites. Sci. Bull. (Beijing). 2025, 70, 2347-64.

23. Zhang, B.; Han, Q.; Zhang, J.; Han, Z.; Niu, S.; Ren, L. Advanced bio-inspired structural materials: Local properties determine overall performance. Materials. Today. 2020, 41, 177-99.

24. Wegst, U. G.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23-36.

25. Goodling, A. E.; Nagelberg, S.; Kaehr, B.; et al. Colouration by total internal reflection and interference at microscale concave interfaces. Nature 2019, 566, 523-7.

26. Huang, L.; Duan, Y.; Dai, X.; et al. Bioinspired metamaterials: multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 2019, 15, e1902730.

27. Kwon, Y. W.; Park, J.; Kim, T.; et al. Flexible near-field nanopatterning with ultrathin, conformal phase masks on nonplanar substrates for biomimetic hierarchical photonic structures. ACS. Nano. 2016, 10, 4609-17.

28. Duan, Y.; Xia, C.; Chen, W.; Jia, H.; Wang, M.; Shi, Y. A bio-inspired broadband absorption metamaterial: Driven by dual-structure synergistically induced current vortices. J. Mater. Sci. Technol. 2025, 206, 193-201.

29. Anguita, J. V.; Ahmad, M.; Haq, S.; Allam, J.; Silva, S. R. P. Ultra-broadband light trapping using nanotextured decoupled graphene multilayers. Sci. Adv. 2016, 2, e1501238.

30. Lai, H.; Li, Q.; Wang, X.; Xu, S. A comprehensive morphology study on the carbon nanotube agglomerations in cementitious composite. Carbon 2024, 223, 119014.

31. Zhang, W.; Ding, E.; Zhang, W.; Li, J.; Luo, C.; Zhang, L. Microstructure controllable polyimide/MXene composite aerogels for high-temperature thermal insulation and microwave absorption. J. Mater. Chem. C. 2023, 11, 9438-48.

32. Hou, Z.; Xue, J.; Liu, Y.; et al. Bidirectional periodic pore structure Si-C-N multiphase ceramic with high thermostability and excellent microwave absorption properties over a wide temperature range. J. Eur. Ceram. Soc. 2024, 44, 850-7.

33. Peng, Y.; Meng, X.; Wei, H.; et al. Controllable construction of hollow Ni/NiO@PPy particles for broadband and highly efficient microwave absorption. Adv. Funct. Mater. 2025, 35, 2423405.

34. Liu, S.; Zhou, Y.; Zhang, F.; et al. A novel full-band microwave absorber based on scattering enhanced prism-honeycomb nested structure. Adv. Funct. Mater. 2025, 35, 2422666.

35. Du, Y.; Yan, Z.; You, W.; et al. Balancing MXene surface termination and interlayer spacing enables superior microwave absorption. Adv. Funct. Mater. 2023, 33, 2301449.

36. Lan, D.; Gao, Z.; Zhao, Z.; Wu, G.; Kou, K.; Wu, H. Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption. Chem. Eng. J. 2021, 408, 127313.

37. Wang, B.; Xu, C.; Duan, G.; Xu, W.; Pi, F. Review of broadband metamaterial absorbers: from principles, design strategies, and tunable properties to functional applications. Adv. Funct. Mater. 2023, 33, 2213818.

38. Wang, J.; Wu, Z.; Xing, Y.; Li, B.; Huang, P.; Liu, L. Multi-scale design of ultra-broadband microwave metamaterial absorber based on hollow carbon/MXene/Mo2C microtube. Small 2023, 19, e2207051.

39. Hao, B.; Zhang, Y.; Si, H.; et al. Multiscale design of dielectric composites for enhanced microwave absorption performance at elevated temperatures. Adv. Funct. Mater. 2025, 35, 2423897.

40. Lv, H.; Yao, Y.; Yuan, M.; et al. Functional nanoporous graphene superlattice. Nat. Commun. 2024, 15, 1295.

41. Xiong, X.; Zhang, H.; Lv, H.; et al. Recent progress in carbon-based materials and loss mechanisms for electromagnetic wave absorption. Carbon 2024, 219, 118834.

42. Zhang, F.; Li, N.; Shi, J.; et al. Recent progress on carbon-based microwave absorption materials for multifunctional applications: a review. Composites. Part. B:. Engineering. 2024, 283, 111646.

43. Liao, S. Y.; Wang, X. Y.; Shi, Y. Y.; et al. Reversible switching between microwave absorption and emi shielding of VO2 composite foam. Small 2024, 20, e2402841.

44. Wang, Y.; Wang, Y.; Han, H.; et al. Multi-level structural design guided by the innovative cup filled theory for enhanced electromagnetic wave absorption. Carbon 2025, 243, 120452.

45. Lv, H.; Zhou, X.; Wu, G.; Kara, U. I.; Wang, X. Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature. J. Mater. Chem. A. 2021, 9, 19710-8.

46. Cao, S.; Yu, J. g-C3N4-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 2014, 5, 2101-7.

47. He, Y.; Su, Q.; Liu, D.; et al. Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance. Chem. Eng. J. 2024, 491, 152041.

48. Wang, X.; Zhao, C.; Li, C.; et al. Progress in MXene-based materials for microwave absorption. J. Mater. Sci. Technol. 2024, 180, 207-25.

49. Cui, C.; Guo, R.; Ren, E.; et al. MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave. Chem. Eng. J. 2021, 405, 126626.

50. Lin, Y.; Zhou, X.; Wang, Y.; et al. Progress of MOFs composites in the field of microwave absorption. Carbon 2025, 238, 120241.

51. Zhang, X.; Tian, X. L.; Qin, Y.; et al. Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS. Nano. 2023, 17, 12510-8.

52. Long, L.; Cai, S.; Deng, M. MoS2-based nanocomposites toward electromagnetic wave absorption. Mater. Res. Bull. 2024, 174, 112732.

53. Miao, B.; Cao, Y.; Zhu, Q.; et al. Scalable synthesis of 2D Ti2CTx MXene and molybdenum disulfide composites with excellent microwave absorbing performance. Adv. Compos. Hybrid. Mater. 2023, 6, 643.

54. Dai, J.; Yang, H.; Wen, B.; Zhou, H.; Wang, L.; Lin, Y. Flower-like MoS2@Bi2Fe4O9 microspheres with hierarchical structure as electromagnetic wave absorber. Appl. Surf. Sci. 2019, 479, 1226-35.

55. Oses, C.; Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295-309.

56. Ma, J.; Duan, Y.; Zhu, N.; Jia, H.; Wu, N.; Pang, H. High-entropy perovskite (Y0.2La0.2Sm0.2Nd0.2Gd0.2)CoO3 with dielectric-conductive synergy achieving wide-temperature-range EMI shielding and electromagnetic wave absorption compatibility. Chem. Eng. J. 2025, 520, 165716.

57. Wu, H.; Lu, Q.; Li, Y.; et al. Rapid joule-heating synthesis for manufacturing high-entropy oxides as efficient electrocatalysts. Nano. Lett. 2022, 22, 6492-500.

58. Chen, X.; Wu, Y.; Gu, W.; et al. Research progress on nanostructure design and composition regulation of carbon spheres for the microwave absorption. Carbon 2022, 189, 617-33.

59. Wang, L.; Li, X.; Shi, X.; et al. Recent progress of microwave absorption microspheres by magnetic-dielectric synergy. Nanoscale 2021, 13, 2136-56.

60. Zhao, X.; Yao, W.; Gao, W.; Chen, H.; Gao, C. Wet-spun superelastic graphene aerogel millispheres with group effect. Adv. Mater. 2017, 29, 1701482.

61. Zhang, Y.; Liu, X.; Guo, Z.; et al. MXene@Co hollow spheres structure boosts interfacial polarization for broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 2024, 176, 167-75.

62. Xu, Z.; Du, J.; Wang, J.; et al. A comparative study on the microwave absorption properties of core-single-shell, core-double-shell and yolk-shell CIP/ceramic composite microparticles. J. Magn. Magn. Mater. 2022, 547, 168959.

63. Tian, Y.; Zhi, D.; Li, T.; et al. Graphene-based aerogel microspheres with annual ring-like structures for broadband electromagnetic attenuation. Chem. Eng. J. 2023, 464, 142644.

64. Wang, G.; Li, C.; Estevez, D.; et al. Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption. Nanomicro. Lett. 2023, 15, 152.

65. Cai, Y.; Wang, Z.; Fei, G.; Lavorgna, M.; Xia, H. Polyimide derived carbon/graphene hybrid aerogel microspheres for strong and wide bandwidth microwave absorption. Adv. Funct. Mater. 2025, 35, 2419252.

66. Fu, Z.; Pang, A.; Luo, H.; Zhou, K.; Yang, H. Research progress of ceramic matrix composites for high temperature stealth technology based on multi-scale collaborative design. J. Mater. Res. Technol. 2022, 18, 2770-83.

67. Yang, Z.; Luo, F.; Hu, Y.; Zhu, D.; Zhou, W. Dielectric and microwave absorption properties of TiAlCo ceramic fabricated by atmospheric plasma spraying. Ceram. Int. 2016, 42, 8525-30.

68. Yu, Y.; Li, Z.; Wei, Z.; et al. Enhancing battery module safety with insulation material: Hollow glass microspheres incorporating aerogel of varying particle sizes. Chem. Eng. J. 2023, 478, 147400.

69. Shen, G.; Wei, H.; Cai, X.; Xu, Y. Dielectric and microwave absorption performances of hollow C/TiO2 composite microspheres. MRS. Commun. 2021, 11, 890-5.

70. Wang, N.; Samani, M. K.; Li, H.; et al. Tailoring the thermal and mechanical properties of graphene film by structural engineering. Small 2018, , e1801346.

71. Li, C.; Zhang, L.; Zhang, S.; et al. Flexible regulation engineering of titanium nitride nanofibrous membranes for efficient electromagnetic microwave absorption in wide temperature spectrum. Nano. Res. 2024, 17, 1666-75.

72. Zhao, B.; Du, Y.; Yan, Z.; et al. Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 2023, 33, 2209924.

73. Kumar, R.; Sahoo, S.; Joanni, E. Composites based on layered materials for absorption of microwaves and electromagnetic shielding. Carbon 2023, 211, 118072.

74. Yin, P.; Lan, D.; Lu, C.; et al. Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection. J. Mater. Sci. Technol. 2025, 204, 204-23.

75. Jian, S.; Wu, X.; Yu, H.; Wang, L. Enhancing strategies of MOFs-derived materials for microwave absorption: review and perspective. Adv. Colloid. Interface. Sci. 2025, 338, 103412.

76. Qin, M.; Zhang, L.; Wu, H. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. (Weinh). 2022, 9, e2105553.

77. Shi, M.; Jia, Z.; Lan, D.; Gao, Z.; Zhang, S.; Wu, G. Enhanced polarization relaxation of multidimensional bimetallic selenide nanocomposites for electromagnetic wave absorption. Adv. Funct. Mater. 2025, e02261.

78. Luo, N.; Ma, Y.; Ni, Z.; Chen, F.; Fu, Q. Preparation of reduced graphene oxide aerogel microspheres with excellent electromagnetic microwave absorption performance. Carbon 2025, 243, 120466.

79. Jiang, Z.; Si, H.; Li, Y.; et al. Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano. Res. 2022, 15, 8546-54.

80. Pan, Y.; Cheng, L.; Lan, D.; et al. Conductor-semiconductor heterointerface polarization enhancement for superior electromagnetic wave absorption. J. Mater. Sci. Technol. 2026, 244, 129-41.

81. Liu, T.; Wang, C.; Zhang, X.; et al. Phase engineering in a twin-phase β/γ-MoCx lightweight nanoflower with matched fermi level for enhancing electron transport across the polarized interfaces in electromagnetic wave attenuation. Adv. Funct. Mater. 2024, 34, 2410194.

82. Zeng, X.; Nie, T.; Zhao, C.; Gao, Y.; Liu, X. In situ exsolution-prepared solid-solution-type sulfides with intracrystal polarization for efficient and selective absorption of low-frequency electromagnetic wave. Adv. Sci. (Weinh). 2024, 11, e2403723.

83. Sun, R.; Lv, H.; Lian, G.; et al. Dielectric shell regulation in synergy FeCoNi@ZnIn2S4 microspheres with broadband electromagnetic wave absorption. Soft. Sci. 2025, 5, 35.

84. Quan, B.; Liang, X.; Ji, G.; et al. Dielectric polarization in electromagnetic wave absorption: review and perspective. J. Alloys. Compd. 2017, 728, 1065-75.

85. Kuriakose, M.; Longuemart, S.; Depriester, M.; Delenclos, S.; Sahraoui, A. H. Maxwell-Wagner-Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals. Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys. 2014, 89, 022511.

86. He, M.; Zhong, X.; Lu, X.; et al. Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater. 2024, 36, e2410186.

87. Li, N.; Wen, B.; Li, X.; Yang, S.; Yang, G.; Ding, S. Phase structure-induced amplification of interfacial polarization loss for excellent electromagnetic wave absorption. Chem. Eng. J. 2024, 488, 150420.

88. Zhao, Y.; Wang, L.; Liu, Z.; et al. Simple synthesis of hollow CoFe carbon fiber composites with enhanced heterogeneous interfaces and impedance matching for broadband microwave absorption. J. Mater. Sci. Technol. 2025, 238, 178-90.

89. Su, X.; Wang, J.; Liu, T.; et al. Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement. Adv. Funct. Mater. 2024, 34, 2403397.

90. Fang, X.; Li, W.; Chen, X.; Wu, Z.; Zhang, Z.; Zou, Y. Controlling the microstructure of biomass-derived porous carbon to assemble structural absorber for broadening bandwidth. Carbon 2022, 198, 70-9.

91. Cao, W.; Wang, X.; Yuan, J.; Wang, W.; Cao, M. Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C. 2015, 3, 10017-22.

92. Li, C.; Zeng, X.; Tan, L.; et al. Three-dimensional interconnected graphene microsphere as fillers for enhancing thermal conductivity of polymer. Chem. Eng. J. 2019, 368, 79-87.

93. Guo, Q.; Amendola, E.; Lavorgna, M.; et al. Robust and recyclable graphene/chitosan composite aerogel microspheres for adsorption of oil pollutants from water. Carbohydr. Polym. 2022, 290, 119416.

94. Lefrançois, Perreault. L.; Colò, F.; Meligrana, G.; et al. Spray-dried mesoporous mixed Cu-Ni oxide@graphene nanocomposite microspheres for high power and durable Li-ion battery anodes. Adv. Energy. Mater. 2018, 8, 1802438.

95. Meng, F.; Wang, H.; Wei, .; et al. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nano. Res. 2018, 11, 2847-61.

96. Zhang, Y.; Si, H.; Dai, Z.; et al. Subwavelength-scale graphene aerogel powders for efficient microwave absorption composites with improved mechanical strength. Chem. Eng. J. 2025, 505, 159118.

97. Wang, Z.; Yang, T.; Zhou, L.; Hou, X.; Fang, Z.; Hou, Y. Current progress and challenges of electromagnetic wave absorbing materials at high temperature. Adv. Sci. (Weinh). 2025, , e04286.

98. Wang, C.; Ding, Y.; Yuan, Y.; et al. Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption. J. Mater. Chem. C. 2015, 3, 11893-901.

99. Shao, G.; Guo, L.; Xu, R.; Wu, Y.; Huang, X. Carbon nanofiber aerogel microspheres with heterogeneous skin-core structure for broadband electromagnetic wave absorption. Carbon 2024, 228, 119416.

100. Fang, X.; Zhang, Y.; Pang, K.; et al. In situ construction of efficient electromagnetic function Graphene/PES composites based on liquid phase exfoliation strategy. Mater. Today. Phys. 2024, 43, 101408.

101. Li, Y.; Meng, F.; Mei, Y.; et al. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 2020, 391, 123512.

102. Zhi, D.; Li, T.; Qi, Z.; et al. Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 2022, 433, 134496.

103. Jing, W.; Hui, Z. Cost-effective preparation and high performance of high-temperature electromagnetic wave absorbing materials based on graphene nanosheets. Ceram. Int. 2024, 50, 31080-7.

104. Wang, W.; Li, Z.; Gao, X.; Huang, Y.; He, R. Material extrusion 3D printing of large-scale SiC honeycomb metastructure for ultra-broadband and high temperature electromagnetic wave absorption. Additive. Manufacturing. 2024, 85, 104158.

105. Jiang, Z.; Gao, Y.; Pan, Z.; et al. Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2024, 174, 195-203.

106. Wang, W.; Wang, L.; Liu, G.; et al. Temperature-dependent dielectric properties and high-temperature microwave absorption performance of Ti3SiC2/Al2O3-13%TiO2 coatings. J. Eur. Ceram. Soc. 2024, 44, 254-60.

107. Li, T.; Zhi, D.; Chen, Y.; Li, B.; Zhou, Z.; Meng, F. Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano. Res. 2020, 13, 477-84.

108. Zhang, Y.; Zhang, L.; Si, H.; et al. TiN nanofiber metacomposites for efficient electromagnetic wave absorption: Insights on multiple reflections and scattering effects. J. Mater. Sci. Technol. 2025, 233, 69-79.

109. Chen, D.; Li, T.; Deng, W.; et al. Dual-resonant cavities-induced hierarchical heterogeneous enhancement effect of multi-interfacial microspheres for broadband microwave absorption. Carbon 2025, 238, 120316.

110. Chen, C.; Xi, J.; Zhou, E.; Peng, L.; Chen, Z.; Gao, C. Porous graphene microflowers for high-performance microwave absorption. Nanomicro. Lett. 2018, 10, 26.

111. Tian, Y.; Estevez, D.; Wang, G.; Peng, M.; Qin, F. Macro-ordered porous carbon nanocomposites for efficient microwave absorption. Carbon 2024, 218, 118614.

112. Duan, S.; Liu, C.; Peng, K.; Xu, G.; Xu, C. A simple and reliable route to prepare high-temperature microwave high-performing absorbers. J. Mater. Sci:. Mater. Electron. 2021, 32, 25996-6006.

113. Hang, T.; Zhou, L.; Li, Z.; et al. Constructing gradient reflection and scattering porous framework in composite aerogels for enhanced microwave absorption. Carbohydr. Polym. 2024, 329, 121777.

114. Li, T.; Li, J.; Zhi, D.; et al. Top-level electromagnetic design of multishell resonant cavity for microspherical microwave structural absorbers. Small. Structures. 2025, 6, 2400666.

115. Gao, J.; Li, Z.; Jin, Z.; Che, X. Ultra-broadband microwave absorber based on disordered metamaterials. Opt. Express. 2024, 32, 25740-54.

116. Sheinfux H, Kaminer I, Genack AZ, Segev M. Interplay between evanescence and disorder in deep subwavelength photonic structures. Nat. Commun. 2016, 7, 12927.

117. Pichler, K.; Kühmayer, M.; Böhm, J.; et al. Random anti-lasing through coherent perfect absorption in a disordered medium. Nature 2019, 567, 351-5.

118. Zhang, H.; Cheng, Q.; Chu, H.; Christogeorgos, O.; Wu, W.; Hao, Y. Hyperuniform disordered distribution metasurface for scattering reduction. Appl. Phys. Lett. 2021, 118, 101601.

119. Qin, Y.; Ni, C.; Xie, X.; et al. Multiple reflection and scattering effects of the lotus seedpod-based activated carbon decorated with Co3O4 microwave absorbent. J. Colloid. Interface. Sci. 2021, 602, 344-54.

120. Zhang, Y.; Han, M.; Hu, R.; Zhang, P.; Pan, L.; Sun, Z. Sandwiched MXene/polyimide composite foams for multiscale microwave absorption. Sci. China. Mater. 2024, 67, 272-8.

121. Li, S.; Mo, W.; Sun, H.; Liu, Y.; Wang, Q. Constructing honeycomb-like hierarchical foam via electromagnetic cooperation strategy for broadband microwave absorption. Carbon 2023, 215, 118425.

122. Benhamou, S. M.; Houbad, M. Optimizing the management, control, and computation of skin depth in laminated structures considering reflection effects. Wave. Motion. 2024, 127, 103292.

123. Shao, G.; Xu, R.; Chen, Y.; et al. Miniaturized hard carbon nanofiber aerogels: from multiscale electromagnetic response manipulation to integrated multifunctional absorbers. Adv. Funct. Mater. 2024, 34, 2408252.

124. Wang, X.; Han, N.; Zhang, Y.; Shi, G.; Zhang, Y.; Li, D. Large-size Ti3C2Tx microsheets for lightweight and wide-frequency microwave absorption. J. Mater. Sci:. Mater. Electron. 2022, 33, 21091-100.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/