REFERENCES
1. Qiu, Y.; Wang, F.; Zhang, Z.; et al. Quantitative softness and texture bimodal haptic sensors for robotic clinical feature identification and intelligent picking. Sci. Adv. 2024, 10, eadp0348.
2. Wang, S.; Chai, Y.; Sa, H.; et al. Sunflower-like self-sustainable plant-wearable sensing probe. Sci. Adv. 2024, 10, eads1136.
3. Cai, R.; Liang, C.; Duan, Y.; et al. Metallic nanoparticle inks for flexible printed electronics. FlexMat 2025, 2, 225-83.
4. Huang, L.; Tang, D.; Yang, Z. Flexible electronic materials and devices toward portable immunoassays. FlexMat 2024, 1, 59-78.
5. Sun, Y.; He, W.; Jiang, C.; Li, J.; Liu, J.; Liu, M. Wearable biodevices based on two-dimensional materials: from flexible sensors to smart integrated systems. Nanomicro. Lett. 2025, 17, 109.
6. Wu, C.; Gao, X.; Zhu, H.; et al. Multiscale stress transmission regulation toward flexible strain sensors with high stability. Adv. Funct. Mater. 2025, e10852.
7. Luo, Y.; Abidian, M. R.; Ahn, J. H.; et al. Technology roadmap for flexible sensors. ACS. Nano. 2023, 17, 5211-95.
8. He, Z.; Zhou, G.; Byun, J. H.; et al. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 2019, 11, 5884-90.
9. Pan, S.; Liu, Z.; Wang, M.; et al. Mechanocombinatorially screening sensitivity of stretchable strain sensors. Adv. Mater. 2019, 31, e1903130.
10. Xu, J.; Chen, P.; Wu, J.; et al. Notch-insensitive, ultrastretchable, efficient self-healing supramolecular polymers constructed from multiphase active hydrogen bonds for electronic applications. Chem. Mater. 2019, 31, 7951-61.
11. Bai, Y.; Yin, L.; Hou, C.; et al. Response regulation for epidermal fabric strain sensors via mechanical strategy. Adv. Funct. Mater. 2023, 33, 2214119.
12. Gan, D.; Huang, Z.; Wang, X.; et al. Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics. Adv. Funct. Mater. 2020, 30, 1907678.
13. Gong, S.; Yap, L. W.; Zhu, B.; et al. Local crack-programmed gold nanowire electronic skin tattoos for in-plane multisensor integration. Adv. Mater. 2019, 31, e1903789.
14. Cuthbert, T. J.; Hannigan, B. C.; Roberjot, P.; Shokurov, A. V.; Menon, C. HACS: helical auxetic yarn capacitive strain sensors with sensitivity beyond the theoretical limit. Adv. Mater. 2023, 35, e2209321.
15. Moon, S.; Park, H. K.; Song, J. H.; et al. Metal deposition on a self-generated microfibril network to fabricate stretchable tactile sensors providing analog position information. Adv. Mater. 2018, 30, e1801408.
16. Wang, R.; Sun, L.; Zhu, X.; et al. Carbon nanotube-based strain sensors: structures, fabrication, and applications. Adv. Mater. Technol. 2023, 8, 2200855.
17. Yang, Y.; Liu, Y.; Yin, R. Fiber/yarn and textile-based piezoresistive pressure sensors. Adv. Fiber. Mater. 2025, 7, 34-71.
18. Xu, F.; Yang, J.; Dong, R.; et al. Wave-shaped piezoelectric nanofiber membrane nanogenerator for acoustic detection and recognition. Adv. Fiber. Mater. 2021, 3, 368-80.
19. Li, S.; Liu, G.; Li, R.; et al. Contact-resistance-free stretchable strain sensors with high repeatability and linearity. ACS. Nano. 2022, 16, 541-53.
20. Cheng, Y.; Wang, R.; Chan, K. H.; Lu, X.; Sun, J.; Ho, G. W. A biomimetic conductive tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACS. Nano. 2018, 12, 3898-907.
21. Wu, C.; Zhang, Z.; Kim, T.; et al. To investigate the effect of bidirectional dimension changes on the sensitivity of magnetic strain sensors. Chem. Eng. J. 2022, 450, 138088.
22. Qi, D.; Zhang, K.; Tian, G.; Jiang, B.; Huang, Y. Stretchable electronics based on PDMS substrates. Adv. Mater. 2021, 33, e2003155.
23. Oh, S.; Song, T. E.; Mahato, M.; et al. Easy-to-wear auxetic SMA knot-architecture for spatiotemporal and multimodal haptic feedbacks. Adv. Mater. 2023, 35, e2304442.
24. Wang, X.; Zhang, Y.; Zhang, X.; et al. A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv. Mater. 2018, 30, e1706738.
25. Li, S.; Tian, J.; Li, K.; et al. Intelligent song recognition via a hollow-microstructure-based, ultrasensitive artificial eardrum. Adv. Sci. 2024, 11, e2405501.
26. Wu, X.; Liu, Q.; Zheng, L.; et al. Innervate commercial fabrics with spirally-layered iontronic fibrous sensors toward dual-functional smart garments. Adv. Sci. 2024, 11, e2402767.
27. Zhu, G. J.; Ren, P. G.; Guo, H.; Jin, Y. L.; Yan, D. X.; Li, Z. M. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires. ACS. Appl. Mater. Interfaces. 2019, 11, 23649-58.
28. Wang, M.; Wang, G.; Zheng, M.; et al. High-performance flexible piezoresistive pressure sensor based on multi-layer interlocking microstructures. J. Mater. Chem. A. 2024, 12, 22931-44.
29. Yang, D.; Zhao, J.; Liu, F. Y.; Chen, M.; Qu, D. H. An intrinsic self-healable supramolecular dynamic covalent elastomer for sustainable high-performance tactile sensing. Chem. Sci. 2025, 16, 9143-55.
30. Pan, X.; Wang, Y.; Xu, Z.; et al. Improving electronics stability via covalent-linked interfaces for ultra-robust pressure sensing array. Chem. Eng. J. 2024, 489, 151354.
31. Chen, X.; Luo, Y.; Chen, Y.; et al. Biomimetic contact behavior inspired tactile sensing array with programmable microdomes pattern by scalable and consistent fabrication. Adv. Sci. 2024, 11, e2408082.
32. Lee, S.; Lee, Y.; Park, C.; et al. Shape-reconfigurable crack-based strain sensor with ultrahigh and tunable sensitivity. Adv. Funct. Mater. 2025, 35, 2421812.
33. Chu, Z.; Jiao, W.; Huang, Y.; Zheng, Y.; Wang, R.; He, X. Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring. J. Mater. Chem. A. 2021, 9, 9634-43.
34. Jiang, Y.; Liu, Z.; Matsuhisa, N.; et al. Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv. Mater. 2018, 30, e1706589.
35. Zhou, Q.; Geng, Z.; Yang, L.; et al. A wearable healthcare platform integrated with biomimetical ions conducted metal-organic framework composites for gas and strain sensing in non-overlapping mode. Adv. Sci. 2023, 10, e2207663.
36. Wu, J.; Zhang, S.; Gu, Q.; Zhang, Q. Recent progress in covalent organic frameworks for flexible electronic devices. FlexMat 2024, 1, 160-72.
37. Wu, B.; Li, K.; Wang, L.; Yin, K.; Nie, M.; Sun, L. Revolutionizing sensing technologies: a comprehensive review of flexible acceleration sensors. FlexMat 2025, 2, 55-81.
38. Li, Y.; Guo, S.; Su, Z.; Ding, K.; Loh, X. J. Lightweight and conformal acousto-ultrasonic sensing network for multi-scale structural health monitoring: a review. FlexMat 2025, 2, 4-29.
39. Yu, S.; Ye, Q.; Yang, B.; et al. Ultrasensitive, highly stretchable and multifunctional strain sensors based on scorpion-leg-inspired gradient crack arrays. Chem. Eng. J. 2024, 497, 154952.
40. Zhou, W.; Du, Y.; Chen, Y.; et al. Bioinspired ultrasensitive flexible strain sensors for real-time wireless detection of liquid leakage. Nanomicro. Lett. 2024, 17, 68.
41. Bai, Y.; Zhou, Y.; Wu, X.; et al. Flexible strain sensors with ultra-high sensitivity and wide range enabled by crack-modulated electrical pathways. Nanomicro. Lett. 2024, 17, 64.
42. Zhang, X.; Sun, Q.; Liang, X.; et al. Stretchable and negative-Poisson-ratio porous metamaterials. Nat. Commun. 2024, 15, 392.
43. Huang, X.; Guo, W.; Liu, S.; et al. Flexible mechanical metamaterials enabled electronic skin for real-time detection of unstable grasping in robotic manipulation. Adv. Funct. Mater. 2022, 32, 2109109.
44. Li, Y.; Luo, S.; Yang, M.; Liang, R.; Zeng, C. Poisson ratio and piezoresistive sensing: a new route to high-performance 3D flexible and stretchable sensors of multimodal sensing capability. Adv. Funct. Mater. 2016, 26, 2900-8.
45. Feng, B.; Jiang, X.; Zou, G.; et al. Nacre-inspired, liquid metal-based ultrasensitive electronic skin by spatially regulated cracking strategy. Adv. Funct. Mater. 2021, 31, 2102359.
46. Guo, Y.; Guo, H.; Han, Y.; et al. Multifunctional hydrogel sensor with curved macro cracks: a strategy for high sensitivity and wide detection range. Adv. Funct. Mater. 2023, 33, 2306820.
47. Jiang, Z.; Nayeem, M. O. G.; Fukuda, K.; et al. Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement. Adv. Mater. 2019, 31, e1903446.
48. Meng, Q.; Chi, T.; Guo, S.; et al. Highly sensitive strain sensors with ultra-low detection limit based on pre-defined serpentine cracks. Mater. Horiz. 2025, 12, 178-89.
49. Wu, C.; Peng, Y.; Wang, S.; et al. Hierarchical structural design towards stretchable strain sensors with ultra-high sensitivity and linearity. Sci. China. Mater. 2024, 67, 2319-28.
50. Amjadi, M.; Turan, M.; Clementson, C. P.; Sitti, M. Parallel microcracks-based ultrasensitive and highly stretchable strain sensors. ACS. Appl. Mater. Interfaces. 2016, 8, 5618-26.
51. Huang, C. B.; Witomska, S.; Aliprandi, A.; et al. Molecule-graphene hybrid materials with tunable mechanoresponse: highly sensitive pressure sensors for health monitoring. Adv. Mater. 2019, 31, e1804600.
52. Wu, M.; Li, S.; Li, Y.; Zhang, M.; Zeng, J. Mussel-inspired, fully biobased, mechanically robust, and room temperature healable supramolecular elastomer composites for sustainable strain sensors. Chem. Eng. J. 2024, 500, 157146.
53. Liu, Z.; Qi, D.; Guo, P.; et al. Thickness-gradient films for high gauge factor stretchable strain sensors. Adv. Mater. 2015, 27, 6230-7.
54. Pang, Y.; Zhang, K.; Yang, Z.; et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS. Nano. 2018, 12, 2346-54.
55. Li, G.; Zhang, Y.; Zhang, X.; et al. Filiform papillae-inspired wearable pressure sensor with high sensitivity and wide detection range. Adv. Funct. Mater. 2025, 35, 2414465.
56. Lin, W.; Xu, Y.; Yu, S.; et al. Highly programmable haptic decoding and self-adaptive spatiotemporal feedback toward embodied intelligence. Adv. Funct. Mater. 2025, 2500633.
57. Cao, Z.; Wang, R.; He, T.; Xu, F.; Sun, J. Interface-controlled conductive fibers for wearable strain sensors and stretchable conducting wires. ACS. Appl. Mater. Interfaces. 2018, 10, 14087-96.
58. Wu, S.; Kim, D.; Tang, X.; King, M. W.; Zhu, Y. Encapsulated stretchable amphibious strain sensors. Mater. Horiz. 2024, 11, 5070-80.
59. Liu, S.; Zhang, W.; He, J.; Lu, Y.; Wu, Q.; Xing, M. Fabrication techniques and sensing mechanisms of textile-based strain sensors: from spatial 1D and 2D perspectives. Adv. Fiber. Mater. 2024, 6, 36-67.
60. Xu, J.; Li, Y.; Liu, T.; et al. Room-temperature self-healing soft composite network with unprecedented crack propagation resistance enabled by a supramolecular assembled lamellar structure. Adv. Mater. 2023, 35, e2300937.
61. Lin, M.; Zheng, Z.; Yang, L.; et al. A high-performance, sensitive, wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection. Adv. Mater. 2022, 34, e2107309.
62. Yang, J.; Li, M.; Fang, S.; et al. Water-induced strong isotropic MXene-bridged graphene sheets for electrochemical energy storage. Science 2024, 383, 771-7.
63. Wan, S.; Chen, Y.; Fang, S.; et al. High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 2021, 20, 624-31.
64. Zhou, T.; Wu, C.; Wang, Y.; et al. Super-tough MXene-functionalized graphene sheets. Nat. Commun. 2020, 11, 2077.
65. Shi, X.; Zhu, L.; Yu, H.; et al. Interfacial click chemistry enabled strong adhesion toward ultra-durable crack-based flexible strain sensors. Adv. Funct. Mater. 2023, 33, 2301036.
66. Wang, C.; Xu, X.; Wang, Z.; et al. Robust self-healing polyurethane-based solid-state ion-conductive elastomers with exceptional strength and ionic conductivity for multifunctional strain sensors and triboelectric nanogenerators. Adv. Mater. 2025, 37, 2504361.
67. Dong, Y.; Xu, D.; Yu, H.; Mi, Q.; Zou, F.; Yao, X. Highly sensitive, scrub-resistant, robust breathable wearable silk yarn sensors via interfacial multiple covalent reactions for health management. Nano. Energy. 2023, 115, 108723.
68. Tan, X. C.; Xu, J. D.; Jian, J. M.; et al. Programmable sensitivity screening of strain sensors by local electrical and mechanical properties coupling. ACS. Nano. 2021, 15, 20590-9.
69. Mackanic, D. G.; Kao, M.; Bao, Z. Enabling deformable and stretchable batteries. Adv. Energy. Mater. 2020, 10, 2001424.
70. Qin, J.; Yin, L. J.; Hao, Y. N.; et al. Flexible and stretchable capacitive sensors with different microstructures. Adv. Mater. 2021, 33, e2008267.
71. Li, Z.; Zhang, S.; Wang, Q.; et al. Untethered & stiffness-tunable ferromagnetic liquid robots for cleaning thrombus in complex blood vessels. Adv. Mater. 2024, 36, e2409142.
72. Liu, L.; Niu, S.; Zhang, J.; et al. Bioinspired, omnidirectional, and hypersensitive flexible strain sensors. Adv. Mater. 2022, 34, e2200823.
73. Wang, J.; Liu, L.; Yang, C.; et al. Ultrasensitive, highly stable, and flexible strain sensor inspired by nature. ACS. Appl. Mater. Interfaces. 2022, 14, 16885-93.
74. Liu, Z.; Qi, D.; Leow, W. R.; et al. 3D-structured stretchable strain sensors for out-of-plane force detection. Adv. Mater. 2018, 30, e1707285.
75. Qu, Q.; Ma, X.; Wang, H.; et al. Plasma-induced wrinkle-crack dual structure for robust directional strain sensing in dynamic motion perception. Small 2025, 21, e2411085.
76. Park, B.; Kim, J.; Kang, D.; et al. Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth. Adv. Mater. 2016, 28, 8130-7.
77. Wang, J.; Shao, Q.; Wang, W.; et al. Enhancing the performance of hydrogel strain/pressure sensors via gradient-entanglement-induced surface wrinkling patterns. Chem. Eng. J. 2024, 498, 155679.
78. Yu, H.; Lian, Y.; Sun, T.; et al. Two-sided topological architecture on a monolithic flexible substrate for ultrasensitive strain sensors. ACS. Appl. Mater. Interfaces. 2019, 11, 43543-52.
79. Wu, C.; Wang, H.; Kim, T.; et al. Tailoring auxetic mechanical metamaterials to achieve patterned wire strain sensors with controllable high sensitivity. Chem. Eng. J. 2022, 442, 136317.
80. Zheng, Z.; Yu, Z.; Kong, L.; Lin, B.; Fu, L.; Xu, C. Strain/deformation-insensitive wearable rubber composite for temperature monitoring based on the photothermal and thermoelectric conversion. Chem. Eng. J. 2024, 484, 149329.
81. Wei, Y.; Lan, C.; Luo, Y.; et al. Ultrasensitive, fast and flexible piezoresistive strain sensor based on Te nanomesh. Chem. Eng. J. 2025, 511, 162024.
82. Qu, X.; Wu, Y.; Ji, P.; et al. Crack-based core-sheath fiber strain sensors with an ultralow detection limit and an ultrawide working range. ACS. Appl. Mater. Interfaces. 2022, 14, 29167-75.
83. Wang, X.; Liu, X.; Schubert, D. W. Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nanomicro. Lett. 2021, 13, 64.
84. Lee, J. H.; Kim, Y. N.; Lee, J.; et al. Hypersensitive meta-crack strain sensor for real-time biomedical monitoring. Sci. Adv. 2024, 10, eads9258.
85. Yao, D.; Wang, W.; Wang, H.; et al. Ultrasensitive and breathable hydrogel fiber-based strain sensors enabled by customized crack design for wireless sign language recognition. Adv. Funct. Mater. 2025, 35, 2416482.
86. Yang, Z.; Pang, Y.; Han, X. L.; et al. Graphene textile strain sensor with negative resistance variation for human motion detection. ACS. Nano. 2018, 12, 9134-41.
87. Wang, C.; Li, X.; Gao, E.; et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 2016, 28, 6640-8.
88. Lee, J.; Shin, S.; Lee, S.; et al. Highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics. ACS. Nano. 2018, 12, 4259-68.
89. Lee, J.; Kim, J.; Liu, D.; et al. Highly aligned, anisotropic carbon nanofiber films for multidirectional strain sensors with exceptional selectivity. Adv. Funct. Mater. 2019, 29, 1901623.
90. Zhang, M.; Wang, C.; Wang, Q.; Jian, M.; Zhang, Y. Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS. Appl. Mater. Interfaces. 2016, 8, 20894-9.
91. Lu, L.; Zhou, Y.; Pan, J.; et al. Design of helically double-leveled gaps for stretchable fiber strain sensor with ultralow detection limit, broad sensing range, and high repeatability. ACS. Appl. Mater. Interfaces. 2019, 11, 4345-52.
92. Wang, X.; Wu, G.; Zhang, X.; et al. Traditional Chinese Medicine (TCM)-inspired fully printed soft pressure sensor array with self-adaptive pressurization for highly reliable individualized long-term pulse diagnostics. Adv. Mater. 2025, 37, e2410312.
93. Yang, H.; Li, J.; Xiao, X.; et al. Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nat. Commun. 2022, 13, 5311.
94. Tang, L.; Wang, H.; Ren, J.; Jiang, X. Highly robust soft-rigid connections via mechanical interlocking for assembling ultra-stretchable displays. npj. Flex. Electron. 2024, 8, 337.
95. Kim, T.; Hong, I.; Kim, M.; et al. Ultra-stable and tough bioinspired crack-based tactile sensor for small legged robots. npj. Flex. Electron. 2023, 7, 255.
96. Jiang, Y.; Zhang, Z.; Wang, Y. X.; et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 2022, 375, 1411-7.
97. Zhao, Y.; Wu, R.; Hao, Y.; et al. Eco-friendly multifunctional hydrogel sensors enabled sustainable and accurate human-machine interaction system. Adv. Mater. 2025, 37, 2507127.
98. Yue, T.; Lu, C.; Tang, K.; et al. Embodying soft robots with octopus-inspired hierarchical suction intelligence. Sci. Robot. 2025, 10, eadr4264.
99. Boutry, C. M.; Beker, L.; Kaizawa, Y.; et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 2019, 3, 47-57.
100. Zhao, H.; Bai, J.; Zhang, X.; et al. A fully integrated wearable sweat sensing patch for online analysis of multiple Parkinson’s disease-related biomarkers. Adv. Mater. 2025, 2504534.
101. Jalandhra, G. K.; Srethbhakdi, L.; Davies, J.; et al. Materials advances in devices for heart disease interventions. Adv. Mater. 2025, 37, e2420114.
102. Zhang, Z.; Li, J.; Chen, H.; et al. Scalable fabrication of uniform fast-response humidity field sensing array for respiration recognition and contactless human-machine interaction. Adv. Funct. Mater. 2025, 2502583.
103. Li, S.; Yang, M.; Wu, Y.; et al. A flexible dual-mode sensor with decoupled strain and temperature sensing for smart robots. Mater. Horiz. 2024, 11, 6361-70.
104. Zhang, Q.; Yang, G.; Xue, L.; et al. Ultrasoft and biocompatible magnetic-hydrogel-based strain sensors for wireless passive biomechanical monitoring. ACS. Nano. 2022, 16, 21555-64.
105. Li, X.; Liu, Q.; Liu, Y.; et al. Flexible, visual, and multifunctional humidity-strain sensors based on ultra-stable perovskite luminescent filaments. Adv. Fiber. Mater. 2025, 7, 762-73.
106. Li, S.; Lu, D.; Li, S.; et al. Bioresorbable, wireless, passive sensors for continuous pH measurements and early detection of gastric leakage. Sci. Adv. 2024, 10, eadj0268.
107. Fan, J.; Liu, C.; Li, N.; et al. Wireless transmission of internal hazard signals in Li-ion batteries. Nature 2025, 641, 639-45.
108. Liu, Y.; Wang, J.; Liu, T.; et al. Triboelectric tactile sensor for pressure and temperature sensing in high-temperature applications. Nat. Commun. 2025, 16, 383.
109. Shi, Y.; Xiang, Z.; Cai, L.; et al. Multi-interface assembled N-doped MXene/HCFG/AgNW films for wearable electromagnetic shielding devices with multimodal energy conversion and healthcare monitoring performances. ACS. Nano. 2022, 16, 7816-33.
110. Sun, L.; Guo, Y.; Ou, R.; et al. Ultrastrong and thermo-remoldable lignin-based polyurethane foam insulation with active-passive fire resistance. Adv. Funct. Mater. 2024, 34, 2405424.
111. Huang, X.; Zheng, Z.; Wang, H.; et al. A freeze-resistant, highly stretchable and biocompatible organohydrogel for non-delayed wearable sensing at ultralow-temperatures. Adv. Funct. Mater. 2024, 34, 2312149.