REFERENCES
1. Gao, J.; Ma, Z.; Liu, F.; Weng, X.; Meng, K. Preparation and microwave absorption properties of Gd–Co ferrite@silica@carbon multilayer core–shell structure composites. Chem. Eng. J. 2022, 446, 137157.
2. Jiang, B.; Shang, J.; Zhang, F.; et al. Electrospinning fabrication of hollow C@TiO2/Fe3C nanofibers composites for excellent wave absorption at a low filling content. Chem. Eng. J. 2024, 495, 153663.
3. Wei, H.; Li, W.; Bachagha, K. Component optimization and microstructure design of carbon nanotube-based microwave absorbing materials: a review. Carbon 2024, 217, 118651.
4. Wang, J.; Ren, J.; Li, Q.; Liu, Y.; Zhang, Q.; Zhang, B. Synthesis and microwave absorbing properties of N-doped carbon microsphere composites with concavo-convex surface. Carbon 2021, 184, 195-206.
5. Rehman, S. U.; Xu, S.; Li, Z.; et al. Hierarchical-bioinspired MOFs enhanced electromagnetic wave absorption. Small 2024, 20, e2306466.
6. Habibpour, S.; Rahimi-Darestani, Y.; Salari, M.; et al. Synergistic layered design of aerogel nanocomposite of graphene nanoribbon/MXene with tunable absorption dominated electromagnetic interference shielding. Small 2024, 20, e2404876.
7. Wang, B.; Xu, C.; Duan, G.; Xu, W.; Pi, F. Review of broadband metamaterial absorbers: from principles, design strategies, and tunable properties to functional applications. Adv. Funct. Mater. 2023, 33, 2213818.
8. Wang, X.; Xing, X.; Zhu, H.; Li, J.; Liu, T. State of the art and prospects of Fe3O4/carbon microwave absorbing composites from the dimension and structure perspective. Adv. Colloid. Interface. Sci. 2023, 318, 102960.
9. Zeng, X.; Cheng, X.; Yu, R.; Stucky, G. D. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020, 168, 606-23.
10. Abdalla, I.; Elhassan, A.; Ali, S.; et al. Impact of defect-rich carbon nanofibers combined with magnetic materials on broadband electromagnetic wave absorption and radar cross-section reduction. Small. Struct. 2025, 6, 2400624.
11. Cai, L.; Pan, F.; Zhu, X.; et al. Etching engineering and electrostatic self-assembly of N-doped MXene/hollow Co-ZIF hybrids for high-performance microwave absorbers. Chem. Eng. J. 2022, 434, 133865.
12. Zhang, Y.; Zhu, C.; Gao, S. Multi-scale magnetic and electric interaction in gradient magnetic-dielectric heterostructures with excellent low-frequency electromagnetic wave absorption. Nano. Res. 2025.
13. An, J.; Zhao, C.; He, Z.; et al. Synthesis and microwave absorption property of nanostructured Ketjen black/Fe3O4 core/shell particles. Rare. Met. 2022, 41, 3351-9.
14. Cui, Y.; Yang, K.; Wang, J.; Shah, T.; Zhang, Q.; Zhang, B. Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon 2021, 172, 1-14.
15. Song, J.; Jiao, J.; Liu, H.; et al. Effect of surface state of SiC fibers on their interfacial properties. Compos. Commun. 2025, 53, 102232.
16. Meng, X.; Liu, Y.; Han, G.; Yang, W.; Yu, Y. Three-dimensional (Fe3O4/ZnO)@C Double-core@shell porous nanocomposites with enhanced broadband microwave absorption. Carbon 2020, 162, 356-64.
17. He, J.; Gao, S.; Zhang, Y.; Zhang, X.; Li, H. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 104, 98-108.
18. Dong, C.; Li, D.; Wang, H.; et al. CoSe2@polythiophene core-shell composites with enhanced interfacial polarization for high-performance broadband electromagnetic absorption. Carbon 2023, 215, 118459.
19. Shu, R.; Guan, Y.; Liu, B. Preparation of nitrogen-doped reduced graphene oxide/zinc ferrite@nitrogen-doped carbon composite for broadband and highly efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 2025, 214, 16-26.
20. Yu, S.; Guo, J.; Zhang, G.; et al. Improved broadband design of SiC/MWCNT absorbing materials through synergistic regulation of heterointerface structure and triple periodic minimal surface meta-structure. Carbon 2024, 226, 119181.
21. Fan, X.; Xu, Z.; Wang, J.; et al. Constructing magnetic iron-based core-shell structure and dielectric nitrogen-doped reduced graphene oxide nanocomposite for enhanced microwave absorption performance. Appl. Surf. Sci. 2023, 607, 155013.
22. Chen, J.; Lei, B.; Hou, Y.; et al. Graphene aerogel encapsulated double carbon shell CoFe@C@C nanocubes for construction of high performance microwave absorbing materials. Carbon 2024, 224, 119081.
23. Zhao, Y.; Zhang, H.; Yang, X.; et al. In situ construction of hierarchical core–shell Fe3O4@C nanoparticles–helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorption. Carbon 2021, 171, 395-408.
24. Li, Z.; Zhu, H.; Rao, L.; et al. Wrinkle structure regulating electromagnetic parameters in constructed core-shell ZnFe2O4@PPy microspheres as absorption materials. Small 2024, 20, e2308581.
25. Si, W.; Liao, Q.; Chu, Y.; Zhang, Z.; Chu, X.; Qin, L. A multi-layer core-shell structure CoFe2O4@Fe3C@NiO composite with high broadband electromagnetic wave-absorption performance. Nanoscale 2023, 15, 16381-9.
26. Yang, B.; Fang, J.; Xu, C.; et al. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nanomicro. Lett. 2022, 14, 170.
27. Huang, M.; Wang, L.; Liu, Q.; You, W.; Che, R. Interface compatibility engineering of Multi-shell Fe@C@TiO2@MoS2 heterojunction expanded microwave absorption bandwidth. Chem. Eng. J. 2022, 429, 132191.
28. Liu, J.; Zhang, L.; Zang, D.; Wu, H. A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 2021, 31, 2105018.
29. Cheng, D.; Xu, J.; Liu, C.; et al. High microwave absorption performance of NiS2/rGO nanocomposites with a thin thickness. J. Phys. Chem. Solids. 2021, 157, 110222.
30. Xu, R.; He, M.; Feng, S.; et al. Microstructure optimization strategy of ZnIn2S4/rGO composites toward enhanced and tunable electromagnetic wave absorption properties. Dalton. Trans. 2023, 52, 15057-70.
31. Chaudhari, N. S.; Warule, S. S.; Kale, B. B. Architecture of rose and hollow marigold-like ZnIn2S4 flowers: structural, optical and photocatalytic study. RSC. Adv. 2014, 4, 12182.
32. Li, M.; Ren, T.; Li, Y.; et al. Constructing CdIn2S4/ZnS type-I band alignment heterojunctions by decorating CdIn2S4 on ZnS microspheres for efficient photocatalytic H2 evolution. Int. J. Hydrogen. Energy. 2023, 48, 37224-33.
33. Zhang, C.; Niu, X.; Wei, Y.; et al. ZnGa2S4: an infrared nonlinear optical material with large second-harmonic generation response and wide band gap. Rare. Met. 2024, 43, 395-401.
34. Lu, X.; Li, X.; Wang, Y.; et al. Construction of ZnIn2S4 nanosheets/3D carbon heterostructure with Schottky contact for enhancing electromagnetic wave absorption performance. Chem. Eng. J. 2022, 431, 134078.
35. Wei, Y.; Wu, Y.; Wang, J.; et al. Rationally designed dual cocatalysts on ZnIn2S4 nanoflowers for photoredox coupling of benzyl alcohol oxidation with H2 evolution. J. Mater. Chem. A. 2024, 12, 18986-92.
36. Li, P.; Zhao, Y.; Zhao, Y.; et al. Trimetallic Prussian blue analogue derived FeCo/FeCoNi@NPC composites for highly efficient microwave absorption. Compos. Part. B. Eng. 2022, 246, 110268.
37. Li, Q.; Li, X.; Zheng, M.; et al. Spatial coupling of photocatalytic CO2 reduction and selective oxidation on covalent triazine framework/ZnIn2S4 core–shell structures. Adv. Funct. Mater. 2025, 35, 2417279.
38. Shen, J.; Zhang, D.; Han, C.; Wang, Y.; Zeng, G.; Zhang, H. Three-dimensional flower-like FeCoNi/reduced graphene oxide nanosheets with enhanced impedance matching for high-performance electromagnetic wave absorption. J. Alloys. Compd. 2021, 883, 160877.
39. Xu, X.; Shen, Y.; Jiao, Z.; et al. Improving absorption performance and microstructure of Zr-V-Fe-Co alloys by substitution of Y element for Fe. J. Mater. Eng. Perform. 2025.
40. Adhikari, A.; Chhetri, K.; Rai, R.; et al. (Fe-Co-Ni-Zn)-based metal-organic framework-derived electrocatalyst for zinc-air batteries. Nanomaterials 2023, 13, 2612.
41. Rabchinskii, M. K.; Sysoev, V. V.; Brzhezinskaya, M.; et al. Rationalizing graphene-ZnO composites for gas sensing via functionalization with amines. Nanomaterials 2024, 14, 735.
42. Rabchinskii, M. K.; Sysoev, V. V.; Ryzhkov, S. A.; et al. A blueprint for the synthesis and characterization of thiolated graphene. Nanomaterials 2021, 12, 45.
43. Yang, K.; Cui, Y.; Liu, Z.; Liu, P.; Zhang, Q.; Zhang, B. Design of core–shell structure NC@MoS2 hierarchical nanotubes as high-performance electromagnetic wave absorber. Chem. Eng. J. 2021, 426, 131308.
44. Jiang, X.; Wang, Q.; Song, L.; et al. Enhancing electromagnetic wave absorption with core-shell structured SiO2@MXene@MoS2 nanospheres. Carbon. Energy. 2024, 6, e502.
45. Jiang, R.; Wang, Y.; Wang, J.; He, Q.; Wu, G. Controlled formation of multiple core-shell structures in metal-organic frame materials for efficient microwave absorption. J. Colloid. Interface. Sci. 2023, 648, 25-36.
46. Wen, B.; Yang, H.; Lin, Y.; et al. Synthesis of core–shell Co@S-doped carbon@ mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A. 2021, 9, 3567-75.
47. Wang, X.; Liu, J.; Han, X.; et al. One-dimensional multicomponent nanofibers engineered as heterostructures for electromagnetic stealth applications. J. Alloys. Compd. 2025, 1028, 180631.
48. Cheng, Y.; Liu, X.; Ren, J.; et al. Component-based modulation engineering to improve magnetoelectric coupling for self-anticorrosion broadband absorption. Carbon 2025, 239, 120325.
49. Zhu, J.; Cheng, L.; Zhang, S.; et al. 0D/1D hollow heterogeneous structure to induce self-assembly of CNTs for optimized self-anticorrosion and electromagnetic wave absorption performance. Carbon 2025, 238, 120310.
50. Yu, B.; Jia, Z.; Lv, C.; et al. Antimony-hybridization engineering in p-n heterojunctions for optimized electromagnetic wave absorption. Small 2025, 21, e2500918.
51. Zhang, S.; Li, M.; Chen, G.; et al. Achieving high performance microwave attenuation by anchoring magnetic CoNi nanoparticles onto few-layer Ti3C2TxMXene. J. Alloys. Compd. 2025, 1023, 180015.
52. Feng, S.; Wang, H.; Ma, J.; et al. Fabrication of hollow Ni/NiO/C/MnO2@polypyrrole core-shell structures for high-performance electromagnetic wave absorption. Compos. Part. B. Eng. 2024, 275, 111344.
53. Han, Y.; Chen, F.; Fu, Q. Heterogeneous three-dimensional FeSiAl@SiO2@MoS2 composite with a SiO2 wave-transmitting layer for enhanced electromagnetic wave absorption performance. J. Mater. Chem. A. 2024, 12, 25322-33.
54. Zhu, H.; Jiao, Q.; Fu, R.; et al. Cu/NC@Co/NC composites derived from core-shell Cu-MOF@Co-MOF and their electromagnetic wave absorption properties. J. Colloid. Interface. Sci. 2022, 613, 182-93.
55. Chang, Q.; Li, C.; Sui, J.; Waterhouse, G. I.; Zhang, Z.; Yu, L. Ni/Ni3ZnC0.7 modified alginate-derived carbon composites with porous structures for electromagnetic wave absorption. Carbon 2022, 200, 166-77.
56. Li, W.; Li, W.; Ying, Y.; et al. Multifunctional flower-like core-shell Fe/Fe4N@SiO2 composites for broadband and high-efficiency ultrathin electromagnetic wave absorber. J. Mater. Sci. Technol. 2023, 132, 90-9.
57. Zhao, X.; Huang, Y.; Liu, X.; Yu, M.; Zong, M.; Li, T. Magnetic nanorods/carbon fibers heterostructures coated with flower-like MoS2 layers for superior microwave absorption. Carbon 2023, 213, 118265.
58. Jiao, Z.; Hu, J.; Ma, M.; et al. One-dimensional core-shell CoC@CoFe/C@PPy composites for high-efficiency microwave absorption. J. Colloid. Interface. Sci. 2023, 650, 2014-23.
59. Wu, Z.; Huang, J.; Zeng, X. Dual magnetic particles modified carbon nanosheets in CoFe/Co@NC heterostructure for efficient electromagnetic synergy. Soft. Sci. 2024, 4, 42.
60. Fan, X.; Zhang, X.; Li, L.; Cao, M. Recent progress and perspective of microwave absorption materials derived from metal-organic frameworks. Soft. Sci. 2024, 4, 43.
61. Xiao, J.; Zhan, B.; He, M.; et al. Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. 2025, 35, 2316722.
62. Rao, L.; Huang, M.; Wang, X.; et al. Atomic infusion induced reconstruction enhances multifunctional thermally conductive films for robust low-frequency electromagnetic absorption. Angew. Chem. Int. Ed. Engl. 2025, 64, e202418338.