REFERENCES

1. Wang, W.; Zhou, H.; Xu, Z.; Li, Z.; Zhang, L.; Wan, P. Flexible conformally bioadhesive MXene hydrogel electronics for machine learning-facilitated human-interactive sensing. Adv. Mater. 2024, 36, e2401035.

2. Hu, H.; Huang, H.; Li, M.; et al. A wearable cardiac ultrasound imager. Nature 2023, 613, 667-75.

3. Xia, M.; Liu, J.; Kim, B. J.; et al. Kirigami-structured, low-impedance, and skin-conformal electronics for long-term biopotential monitoring and human-machine interfaces. Adv. Sci. 2024, 11, e2304871.

4. Lo, L. W.; Zhao, J.; Aono, K.; et al. Stretchable sponge electrodes for long-term and motion-artifact-tolerant recording of high-quality electrophysiologic signals. ACS. Nano. 2022, 16, 11792-801.

5. Li, J.; Ma, Y.; Huang, D.; et al. High-performance flexible microneedle array as a low-impedance surface biopotential dry electrode for wearable electrophysiological recording and polysomnography. Nanomicro. Lett. 2022, 14, 132.

6. Pan, S.; Zhang, F.; Cai, P.; et al. Mechanically interlocked hydrogel–elastomer hybrids for on-skin electronics. Adv. Funct. Mater. 2020, 30, 1909540.

7. Yuk, H.; Lu, B.; Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 2019, 48, 1642-67.

8. Liu, K.; Duan, T.; Zhang, F.; et al. Flexible electrode materials for emerging electronics: materials, fabrication and applications. J. Mater. Chem. A. 2024, 12, 20606-37.

9. Ding, Y.; Xiong, S.; Sun, L.; et al. Metal nanowire-based transparent electrode for flexible and stretchable optoelectronic devices. Chem. Soc. Rev. 2024, 53, 7784-827.

10. Jang, W.; Kim, B. G.; Seo, S.; et al. Strong dark current suppression in flexible organic photodetectors by carbon nanotube transparent electrodes. Nano. Today. 2021, 37, 101081.

11. Guo, R.; Li, X.; Zhou, Y.; et al. Semi-liquid metal-based highly permeable and adhesive electronic skin inspired by spider web. Sci. Bull. 2024, 69, 2723-34.

12. Xu, Y.; Su, Y.; Xu, X.; et al. Porous liquid metal-elastomer composites with high leakage resistance and antimicrobial property for skin-interfaced bioelectronics. Sci. Adv. 2023, 9, eadf0575.

13. Dimov, I. B.; Sautter, A.; Lövenich, W.; Neumann, C.; Malliaras, G. G. Adhesive cutaneous conducting polymer electrodes. Appl. Phys. Rev. 2022, 9, 021401.

14. Maithani, Y.; Choudhuri, B.; Mehta, B.; Singh, J. Self-adhesive, stretchable, and dry silver nanorods embedded polydimethylsiloxane biopotential electrodes for electrocardiography. Sens. Actuators. A. Phys. 2021, 332, 113068.

15. Luo, G.; Xie, J.; Liu, J.; et al. Highly conductive, stretchable, durable, breathable electrodes based on electrospun polyurethane mats superficially decorated with carbon nanotubes for multifunctional wearable electronics. Chem. Eng. J. 2023, 451, 138549.

16. Zheng, S.; Wang, X.; Li, W.; Liu, Z.; Li, Q.; Yan, F. Pressure-stamped stretchable electronics using a nanofibre membrane containing semi-embedded liquid metal particles. Nat. Electron. 2024, 7, 576-85.

17. Kim, D. H.; Lu, N.; Ma, R.; et al. Epidermal electronics. Science 2011, 333, 838-43.

18. Sang, S.; Pei, Z.; Zhang, F.; et al. Three-dimensional printed bimodal electronic skin with high resolution and breathability for hair growth. ACS. Appl. Mater. Interfaces. 2022, 14, 31493-501.

19. Tian, Q.; Zhao, H.; Wang, X.; et al. Hairy-skin-adaptive viscoelastic dry electrodes for long-term electrophysiological monitoring. Adv. Mater. 2023, 35, e2211236.

20. Wang, C.; Wang, H.; Wang, B.; et al. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci. Adv. 2022, 8, eabo1396.

21. Ferrari, L. M.; Sudha, S.; Tarantino, S.; et al. Ultraconformable temporary tattoo electrodes for electrophysiology. Adv. Sci. 2018, 5, 1700771.

22. Kim, D. W.; Kim, H.; Hwang, G.; et al. Conformably skin-adherent piezoelectric patch with bioinspired hierarchically arrayed microsuckers enables physical energy amplification. ACS. Energy. Lett. 2022, 7, 1820-7.

23. Ma, Y.; Ma, S.; Wu, Y.; et al. Remote control over underwater dynamic attachment/detachment and locomotion. Adv. Mater. 2018, 30, e1801595.

24. Gan, D.; Huang, Z.; Wang, X.; et al. Bioadhesive and electroactive hydrogels for flexible bioelectronics and supercapacitors enabled by a redox-active core-shell PEDOT@PZIF-71 system. Mater. Horiz. 2023, 10, 2169-80.

25. Huang, J.; Wang, L.; Jin, Y.; et al. Tuning the rigidity of silk fibroin for the transfer of highly stretchable electronics. Adv. Funct. Mater. 2020, 30, 2001518.

26. Bhat, K. S.; Ahmad, R.; Wang, Y.; Hahn, Y. Low-temperature sintering of highly conductive silver ink for flexible electronics. J. Mater. Chem. C. 2016, 4, 8522-7.

27. Wei, H.; Cauchy, X.; Navas, I. O.; et al. Direct 3D printing of hybrid nanofiber-based nanocomposites for highly conductive and shape memory applications. ACS. Appl. Mater. Interfaces. 2019, 11, 24523-32.

28. Park, J. E.; Kang, H. S.; Koo, M.; Park, C. Autonomous surface reconciliation of a liquid-metal conductor micropatterned on a deformable hydrogel. Adv. Mater. 2020, 32, e2002178.

29. Chen, J. X. M.; Chen, T.; Zhang, Y.; et al. Conductive bio-based hydrogel for wearable electrodes via direct ink writing on skin. Adv. Funct. Mater. 2024, 34, 2403721.

30. Huang, Y.; Wu, H.; Xiao, L.; et al. Assembly and applications of 3D conformal electronics on curvilinear surfaces. Mater. Horiz. 2019, 6, 642-83.

31. Yang, J.; Cheng, W.; Kalantar-Zadeh, K. Electronic skins based on liquid metals. Proc. IEEE. 2019, 107, 2168-84.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/