REFERENCES
1. Ates, H. C.; Nguyen, P. Q.; Gonzalez-Macia, L.; et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 2022, 7, 887-907.
3. Gong, S.; Lu, Y.; Yin, J.; Levin, A.; Cheng, W. Materials-driven soft wearable bioelectronics for connected healthcare. Chem. Rev. 2024, 124, 455-553.
4. Han, F.; Wang, T.; Liu, G.; et al. Materials with tunable optical properties for wearable epidermal sensing in health monitoring. Adv. Mater. 2022, 34, e2109055.
5. Wang, L.; Xu, T.; Zhang, X. Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC. Trends. Anal. Chem. 2021, 134, 116130.
6. Sun, G.; Wang, P.; Jiang, Y.; Sun, H.; Meng, C.; Guo, S. Recent advances in flexible and soft gel-based pressure sensors. Soft. Sci. 2022, 2, 17.
7. Gao, D.; Lv, J.; Lee, P. S. Natural polymer in soft electronics: opportunities, challenges, and future prospects. Adv. Mater. 2022, 34, e2105020.
8. Wang, C.; Yokota, T.; Someya, T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 2021, 121, 2109-46.
9. Wang, Z.; Wei, H.; Huang, Y.; Wei, Y.; Chen, J. Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing. Chem. Soc. Rev. 2023, 52, 2992-3034.
10. Wang, C.; Liu, Y. Functionalization of natural-derived biogels for soft bioelectronics. Acc. Mater. Res. 2024, 5, 1-5.
11. Zeng, Q.; Tang, N.; Shi, G.; Zhang, M. Biogel library-accelerated discovery of all-natural bioelectronics. ACS. Sens. 2024, 9, 6685-97.
12. Campiglio, C. E.; Contessi, Negrini., N.; Farè, S.; Draghi, L. Cross-linking strategies for electrospun gelatin scaffolds. Materials. (Basel). 2019, 12, 2476.
13. Zhou, L.; Dai, C.; Fan, L.; et al. Injectable Self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery. Adv. Funct. Mater. 2021, 31, 2007457.
14. Balakrishnan, G.; Bhat, A.; Naik, D.; et al. Gelatin-based ingestible impedance sensor to evaluate gastrointestinal epithelial barriers. Adv. Mater. 2023, 35, e2211581.
15. Mao, L.; Ma, L.; Fu, Y.; et al. Transglutaminase modified type A gelatin gel: The influence of intra-molecular and inter-molecular cross-linking on structure-properties. Food. Chem. 2022, 395, 133578.
16. Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft. Matter. 2014, 10, 672-87.
17. Xu, C.; Chen, Y.; Zhao, S.; et al. Mechanical regulation of polymer gels. Chem. Rev. 2024, 124, 10435-508.
18. Zhang, C. W.; Si, M.; Chen, C.; et al. Hierarchical engineering for biopolymer-based hydrogels with tailored property and functionality. Adv. Mater. 2025, 37, e2414897.
19. He, Q.; Huang, Y.; Wang, S. Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv. Funct. Mater. 2018, 28, 1705069.
20. Yuan, X.; Zhu, Z.; Xia, P.; et al. Tough gelatin hydrogel for tissue engineering. Adv. Sci. (Weinh). 2023, 10, e2301665.
21. Wei, Y.; He, Y.; Wang, C.; Chen, G.; Zhao, B. Asymmetric “Janus” biogel for human-machine interfaces. Adv. Funct. Mater. 2023, 33, 2214366.
22. Qin, Z.; Dong, D.; Yao, M.; et al. Freezing-tolerant supramolecular organohydrogel with high toughness, thermoplasticity, and healable and adhesive properties. ACS. Appl. Mater. Interfaces. 2019, 11, 21184-93.
23. Xu, L.; Wang, C.; Cui, Y.; Li, A.; Qiao, Y.; Qiu, D. Conjoined-network rendered stiff and tough hydrogels from biogenic molecules. Sci. Adv. 2019, 5, eaau3442.
24. Yang, S.; Zhang, Y.; Wang, T.; Sun, W.; Tong, Z. Ultrafast and programmable shape memory hydrogel of gelatin soaked in tannic acid solution. ACS. Appl. Mater. Interfaces. 2020, 12, 46701-9.
25. Gu, Y.; Xu, C.; Wang, Y.; et al. Compressible, anti-fatigue, extreme environment adaptable, and biocompatible supramolecular organohydrogel enabled by lignosulfonate triggered noncovalent network. Nat. Commun. 2025, 16, 160.
26. Huang, Y.; Chen, T.; Ren, C.; et al. High-strength gelatin hydrogel scaffold with drug loading remodels the inflammatory microenvironment to enhance osteoporotic bone repair. Adv. Mater. 2025, 37, e2501051.
27. Ren, C.; Chen, W.; Liao, Y.; et al. Reinforcing gelatin hydrogels via in situ phase separation and enhanced interphase bonding for advanced 3D fabrication. Adv. Mater. 2025, 37, e2416432.
28. Baumgartner, M.; Hartmann, F.; Drack, M.; et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 2020, 19, 1102-9.
29. Song, H.; Wang, H.; Gan, T.; et al. Gelatin biogel-liquid metal composite transient circuits for recyclable flexible electronics. Adv. Mater. Technol. 2024, 9, 2301483.
30. Hao, X. P.; Zhang, C. W.; Zhang, X. N.; et al. Healable, recyclable, and multifunctional soft electronics based on biopolymer hydrogel and patterned liquid metal. Small 2022, 18, e2201643.
31. Jia, L.; Li, Y.; Ren, A.; Xiang, T.; Zhou, S. Degradable and recyclable hydrogels for sustainable bioelectronics. ACS. Appl. Mater. Interfaces. 2024, 16, 32887-905.
32. Song, X.; Liu, Y.; Liu, Z.; et al. Natural protein-based biogels with biomimetic mechanics and multifunctionality for skin sensors. ACS. Mater. Lett. 2025, 7, 202-9.
33. Wei, S.; Xu, J.; Zhao, W.; Li, X.; Zhao, W.; Yan, S. Mechanically robust gelatin gel for sensitive touch sensor based on electrode potential. Adv. Funct. Mater. 2024, 34, 2408648.
34. Tordi, P.; Tamayo, A.; Jeong, Y.; Bonini, M.; Samorì, P. Multiresponsive ionic conductive alginate/gelatin organohydrogels with tunable functions. Adv. Funct. Mater. 2024, 34, 2410663.
35. Lu, X.; Mo, Z.; Liu, Z.; et al. Robust, efficient, and recoverable thermocells with zwitterion-boosted hydrogel electrolytes for energy-autonomous and wearable sensing. Angew. Chem. Int. Ed. Engl. 2024, 63, e202405357.
36. Wang, C.; Wang, H.; Wang, B.; et al. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci. Adv. 2022, 8, eabo1396.
37. Li, L.; Ye, X.; Ji, Z.; et al. Paintable, fast gelation, highly adhesive hydrogels for high-fidelity electrophysiological monitoring wirelessly. Small 2025, 21, e2407996.
38. Lan, L.; Ping, J.; Li, H.; et al. Skin-inspired all-natural biogel for bioadhesive interface. Adv. Mater. 2024, 36, e2401151.
39. Shin, S. R.; Jung, S. M.; Zalabany, M.; et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS. Nano. 2013, 7, 2369-80.
40. Yin, R.; Zhang, C.; Shao, J.; et al. Integration of flexible, recyclable, and transient gelatin hydrogels toward multifunctional electronics. J. Mater. Sci. Technol. 2023, 145, 83-92.
41. Wan, C.; Wu, Z.; Ren, M.; et al.
42. Zhang, Y. Z.; El-Demellawi, J. K.; Jiang, Q.; et al. MXene hydrogels: fundamentals and applications. Chem. Soc. Rev. 2020, 49, 7229-51.
43. Wang, X.; Wang, X.; Yin, J.; et al. Mechanically robust, degradable and conductive MXene-composited gelatin organohydrogel with environmental stability and self-adhesiveness for multifunctional sensor. Compos. Part. B. Eng. 2022, 241, 110052.
44. Picchio, M. L.; Gallastegui, A.; Casado, N.; et al. Mixed ionic and electronic conducting eutectogels for 3d‐printable wearable sensors and bioelectrodes. Adv. Mater. Technol. 2022, 7, 2101680.