REFERENCES

1. Bernabe, E.; Marcenes, W.; Hernandez, C. R.; et al.; GBD 2017 Oral Disorders Collaborators. Global, regional, and national levels and trends in burden of oral conditions from 1990 to 2017: a systematic analysis for the global burden of disease 2017 study. J. Dent. Res. 2020, 99, 362-73.

2. Watt, R. G.; Venturelli, R.; Daly, B. Understanding and tackling oral health inequalities in vulnerable adult populations: from the margins to the mainstream. Br. Dent. J. 2019, 227, 49-54.

3. Weik, U.; Shankar-Subramanian, S.; Sämann, T.; Wöstmann, B.; Margraf-Stiksrud, J.; Deinzer, R. “You should brush your teeth better”: a randomized controlled trial comparing best-possible versus as-usual toothbrushing. BMC. Oral. Health. 2023, 23, 456.

4. Van der Weijden, G. A. F.; van Loveren, C. Mechanical plaque removal in step-1 of care. Periodontol. 2000. 2023.

5. Palanisamy, S. Innovations in oral hygiene tools: a mini review on recent developments. Front. Dent. Med. 2024, 5, 1442887.

6. Pindobilowo; Tjiptoningsih, U. G.; Ariani, D. Effective tooth brushing techniques based on periodontal tissue conditions: a narrative review. FJAS 2023, 2, 1649-62.

7. Lee, Y. J.; Lee, P. J.; Kim, K. S.; et al. Toothbrushing region detection using three-axis accelerometer and magnetic sensor. IEEE. Trans. Biomed. Eng. 2012, 59, 872-81.

8. Marcon, M.; Sarti, A.; Tubaro, S. Toothbrush motion analysis to help children learn proper tooth brushing. Comput. Vis. Image. Underst. 2016, 148, 34-45.

9. Akther, S.; Saleheen, N.; Saha, M.; Shetty, V.; Kumar, S. mTeeth: identifying brushing teeth surfaces using wrist-worn inertial sensors. Proc. ACM. Interact. Mob. Wearable. Ubiquitous. Technol. 2021, 5, 1-25.

10. Wang, Y.; Hong, F.; Jiang, Y.; Bao, C.; Liu, C.; Guo, Z. ToothFairy: real-time tooth-by-tooth brushing monitor using earphone reversed signals. Proc. ACM. Interact. Mob. Wearable. Ubiquitous. Technol. 2023, 7, 1-19.

11. Herath, B.; Dewmin, G. H. S.; Sukumaran, S.; et al. Design and development of a novel oral care simulator for the training of nurses. IEEE. Trans. Biomed. Eng. 2020, 67, 1314-20.

12. Daigo, T.; Muramatsu, M.; Mitani, A. Development of the second prototype of an oral care simulator. JRM 2021, 33, 172-9.

13. Matsuno, T.; Yabushita, T.; Mitani, A.; Hirai, S. Measurement algorithm for oral care simulator using a single force sensor. Adv. Robot. 2021, 35, 723-32.

14. Mouri, N.; Sasaki, M.; Yagimaki, T.; Murakami, M.; Igari, K.; Sasaki, K. Development of a training simulator for caregivers’ toothbrushing skill using virtual reality. ABE 2023, 12, 91-100.

15. Anwar, A. I.; Zulkifli, A. The influence of demonstration method education in the knowledge of tooth brushing in children age 10-12 years. Enferm. Clín. 2020, 30, 429-32.

16. Shida, H.; Okabayashi, S.; Yoshioka, M.; et al. Effectiveness of a digital device providing real-time visualized tooth brushing instructions: a randomized controlled trial. PLoS. One. 2020, 15, e0235194.

17. Acherkouk, A.; Götze, M.; Kiesow, A.; et al. Robot and mechanical testing of a specialist manual toothbrush for cleaning efficacy and improved force control. BMC. Oral. Health. 2022, 22, 225.

18. Rajab, L. D.; Assaf, D. H.; El-Smadi, L. A.; Hamdan, A. A. Comparison of effectiveness of oral hygiene instruction methods in improving plaque scores among 8-9-year children: a randomized controlled trial. Eur. Arch. Paediatr. Dent. 2022, 23, 289-300.

19. Haresaku, S.; Miyoshi, M.; Kubota, K.; et al. Current status and future prospects for oral care education in Bachelor of Nursing curriculums: a Japanese cross-sectional study. Jpn. J. Nurs. Sci. 2023, 20, e12521.

20. Li, Y.; Ye, H.; Wu, S.; et al. Mixed reality and haptic-based dental simulator for tooth preparation: research, development, and preliminary evaluation. JMIR. Serious. Games. 2022, 10, e30653.

21. Ponce-Gonzalez, I.; Cheadle, A.; Aisenberg, G.; Cantrell, L. F. Improving oral health in migrant and underserved populations: evaluation of an interactive, community-based oral health education program in Washington state. BMC. Oral. Health. 2019, 19, 30.

22. Chandio, N.; Micheal, S.; Tadakmadla, S. K.; et al. Barriers and enablers in the implementation and sustainability of toothbrushing programs in early childhood settings and primary schools: a systematic review. BMC. Oral. Health. 2022, 22, 242.

23. Nakre, P. D.; Harikiran, A. G. Effectiveness of oral health education programs: a systematic review. J. Int. Soc. Prev. Community. Dent. 2013, 3, 103-15.

24. Qiu, Y.; Ashok, A.; Nguyen, C. C.; Yamauchi, Y.; Do, T. N.; Phan, H. P. Integrated sensors for soft medical robotics. Small 2024, 20, e2308805.

25. Zhu, J.; Zhou, C.; Zhang, M. Recent progress in flexible tactile sensor systems: from design to application. Soft. Sci. 2021, 1, 3.

26. Guess, M.; Soltis, I.; Rigo, B.; et al. Wireless batteryless soft sensors for ambulatory cardiovascular health monitoring. Soft. Sci. 2023, 3, 24.

27. Jiang, Y.; Huang, J.; Liu, H.; Xie, H.; Zhou, S. A vitrimer-like elastomer with quadruple hydrogen bonding as a fully recyclable substrate for sustainable flexible wearables. Adv. Funct. Mater. 2025, 2503128.

28. Liu, P.; Ding, E. X.; Xu, Z.; et al. Wafer-scale fabrication of wearable all-carbon nanotube photodetector arrays. ACS. Nano. 2024, 18, 18900-9.

29. Tian, Y.; Wei, Y.; Wang, M.; et al. Ultra-stretchable, tough, and self-healing polyurethane with tunable microphase separation for flexible wearable electronics. Nano. Energy. 2025, 139, 110908.

30. Aubeeluck, D. A.; Forbrigger, C.; Taromsari, S. M.; Chen, T.; Diller, E.; Naguib, H. E. Screen-printed resistive tactile sensor for monitoring tissue interaction forces on a surgical magnetic microgripper. ACS. Appl. Mater. Interfaces. 2023, 15, 34008-22.

31. Arshad, A.; Saleem, M. M.; Tiwana, M. I.; ur Rahman, H.; Iqbal, S.; Cheung, R. A high sensitivity and multi-axis fringing electric field based capacitive tactile force sensor for robot assisted surgery. Sens. Actuators. A. Phys. 2023, 354, 114272.

32. Vijayakanth, T.; Shankar, S.; Finkelstein-Zuta, G.; Rencus-Lazar, S.; Gilead, S.; Gazit, E. Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels. Chem. Soc. Rev. 2023, 52, 6191-220.

33. Chen, S.; Fan, S.; Chan, H.; et al. Liquid metal functionalization innovations in wearables and soft robotics for smart healthcare applications. Adv. Funct. Mater. 2024, 34, 2309989.

34. Li, T.; Su, Y.; Zheng, H.; et al. An artificial intelligence-motivated skin-like optical fiber tactile sensor. Adv. Intell. Syst. 2023, 5, 2200460.

35. Mun, H.; Diaz Cortes, D. S.; Youn, J. H.; Kyung, K. U. Multi-degree-of-freedom force sensor incorporated into soft robotic gripper for improved grasping stability. Soft. Robot. 2024, 11, 628-38.

36. Dong, K.; Wei, M.; Zhou, Q.; He, B.; Gao, B. Bionic diffractive meta-silk patch for visually flexible wearables. Laser. Photonics. Rev. 2024, 18, 2300972.

37. Gerald, A.; Russo, S. Soft sensing and haptics for medical procedures. Nat. Rev. Mater. 2024, 9, 86-8.

38. Wu, T.; Dong, Y.; Liu, X.; et al. Vision-based tactile intelligence with soft robotic metamaterial. Mater. Design. 2024, 238, 112629.

39. Wong, D. C. Y.; Song, J.; Yu, H. The design of a vision-based bending sensor for PneuNet actuators leveraging ArUco marker detection. IEEE. Sens. J. 2023, 23, 27137-45.

40. Deng, Y.; Yang, T.; Dai, S.; Song, G. A miniature triaxial fiber optic force sensor for flexible ureteroscopy. IEEE. Trans. Biomed. Eng. 2021, 68, 2339-47.

41. Zhang, T.; Chen, B.; Zuo, S. A novel 3-DOF force sensing microneedle with integrated fiber bragg grating for microsurgery. IEEE. Trans. Ind. Electron. 2022, 69, 940-9.

42. Di, J.; Dugonjic, Z.; Fu, W.; et al. Using fiber optic bundles to miniaturize vision-based tactile sensors. IEEE. Trans. Robot. 2025, 41, 62-81.

43. Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas, F.; Marín-Jiménez, M. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern. Recognit. 2014, 47, 2280-92.

44. Yang, Z.; Ge, S.; Wan, F.; Liu, Y.; Song, C. Scalable tactile sensing for an omni-adaptive soft robot finger. In 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, USA. 15 May - 15 Jul, 2020. IEEE; 2020. pp. 572-7.

45. Liu, X.; Han, X.; Hong, W.; Wan, F.; Song, C. Proprioceptive learning with soft polyhedral networks. Int. J. Robot. Res. 2024, 43, 1916-35.

46. Edwards, P. J.; Colleoni, E.; Sridhar, A.; Kelly, J. D.; Stoyanov, D. Visual kinematic force estimation in robot-assisted surgery - application to knot tying. Comput. Methods. Biomech. Biomed. Eng. Imaging. Vis. 2021, 9, 414-20.

47. Fu, J.; Yu, Z.; Guo, Q.; Zheng, L.; Gan, D. A variable stiffness robotic gripper based on parallel beam with vision-based force sensing for flexible grasping. Robotica 2024, 42, 4036-54.

48. Visentin, F.; Naselli, G. A.; Mazzolai, B. A new exploration strategy for soft robots based on proprioception. In 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, USA. 15 May - 15 Jul, 2020. IEEE; 2020. pp. 816-21.

49. Berral-Soler, R.; Muñoz-Salinas, R.; Medina-Carnicer, R.; Marín-Jiménez, M. J. DeepArUco++: improved detection of square fiducial markers in challenging lighting conditions. Image. Vis. Comput. 2024, 152, 105313.

50. Amiriebrahimabadi, M.; Rouhi, Z.; Mansouri, N. A comprehensive survey of multi-level thresholding segmentation methods for image processing. Arch. Computat. Methods. Eng. 2024, 31, 3647-97.

51. Ye, C.; Cang, T.; Zhu, J.; Wang, Z.; Li, X. Soft Thermoplastic polyurethane/silver nanowire membranes with low hysteresis for large strain sensing and joule heating. ACS. Appl. Polym. Mater. 2024, 6, 11149-59.

52. Bek, M.; Betjes, J.; von Bernstorff, B.; Emri, I. Viscoelasticity of new generation thermoplastic polyurethane vibration isolators. Phys. Fluids. 2017, 29, 121614.

53. Zhang, Y.; Hou, F.; Lu, Z.; Ding, H.; Chen, L. Analytical and experimental study of thermoplastic polyurethane inclined beam isolator with quasi-zero stiffness and fractional derivative damping. Mech. Syst. Signal. Process. 2025, 224, 111962.

54. Zheng, H.; Jin, Y.; Wang, H.; Zhao, P. DotView: a low-cost compact tactile sensor for pressure, shear, and torsion estimation. IEEE. Robot. Autom. Lett. 2023, 8, 880-7.

55. Funk, N.; Helmut, E.; Chalvatzaki, G.; Calandra, R.; Peters, J. Evetac: an event-based optical tactile sensor for robotic manipulation. IEEE. Trans. Robot. 2024, 40, 3812-32.

56. Fang, B.; Zhao, J.; Liu, N.; et al. Force measurement technology of vision-based tactile sensor. Adv. Intell. Syst. 2025, 7, 2400290.

57. Lin, X.; Wiertlewski, M. Sensing the frictional state of a robotic skin via subtractive color mixing. IEEE. Robot. Autom. Lett. 2019, 4, 2386-92.

58. Zhang, G.; Du, Y.; Yu, H.; Wang, M. Y. DelTact: a vision-based tactile sensor using a dense color pattern. IEEE. Robot. Autom. Lett. 2022, 7, 10778-85.

59. Yuan, W.; Dong, S.; Adelson, E. H. GelSight: high-resolution robot tactile sensors for estimating geometry and force. Sensors 2017, 17, 2762.

60. Sun, H.; Kuchenbecker, K. J.; Martius, G. A soft thumb-sized vision-based sensor with accurate all-round force perception. Nat. Mach. Intell. 2022, 4, 135-45.

61. Lo Preti, M.; Bernabei, F.; Nardin, A. B.; Beccai, L. Triaxial 3-D-channeled soft optical sensor for tactile robots. IEEE. Sens. J. 2024, 24, 27956-65.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/